This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgraph of a multigraph is a multigraph. (Contributed by AV, 26-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subumgr | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑆 SubGraph 𝐺 ) → 𝑆 ∈ UMGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 ) | |
| 2 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 ) | |
| 4 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( Edg ‘ 𝑆 ) = ( Edg ‘ 𝑆 ) | |
| 6 | 1 2 3 4 5 | subgrprop2 | ⊢ ( 𝑆 SubGraph 𝐺 → ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) |
| 7 | umgruhgr | ⊢ ( 𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph ) | |
| 8 | subgruhgrfun | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺 ) → Fun ( iEdg ‘ 𝑆 ) ) | |
| 9 | 7 8 | sylan | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑆 SubGraph 𝐺 ) → Fun ( iEdg ‘ 𝑆 ) ) |
| 10 | 9 | ancoms | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ) → Fun ( iEdg ‘ 𝑆 ) ) |
| 11 | 10 | funfnd | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ) → ( iEdg ‘ 𝑆 ) Fn dom ( iEdg ‘ 𝑆 ) ) |
| 12 | 11 | adantl | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ) ) → ( iEdg ‘ 𝑆 ) Fn dom ( iEdg ‘ 𝑆 ) ) |
| 13 | simplrl | ⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑆 SubGraph 𝐺 ) | |
| 14 | simplrr | ⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝐺 ∈ UMGraph ) | |
| 15 | simpr | ⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) | |
| 16 | 1 3 | subumgredg2 | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
| 17 | 13 14 15 16 | syl3anc | ⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
| 18 | 17 | ralrimiva | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ) ) → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
| 19 | fnfvrnss | ⊢ ( ( ( iEdg ‘ 𝑆 ) Fn dom ( iEdg ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) → ran ( iEdg ‘ 𝑆 ) ⊆ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) | |
| 20 | 12 18 19 | syl2anc | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ) ) → ran ( iEdg ‘ 𝑆 ) ⊆ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
| 21 | df-f | ⊢ ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ↔ ( ( iEdg ‘ 𝑆 ) Fn dom ( iEdg ‘ 𝑆 ) ∧ ran ( iEdg ‘ 𝑆 ) ⊆ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) | |
| 22 | 12 20 21 | sylanbrc | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ) ) → ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
| 23 | subgrv | ⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) ) | |
| 24 | 1 3 | isumgrs | ⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ UMGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) |
| 25 | 24 | adantr | ⊢ ( ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) → ( 𝑆 ∈ UMGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) |
| 26 | 23 25 | syl | ⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑆 ∈ UMGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) |
| 27 | 26 | ad2antrl | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ) ) → ( 𝑆 ∈ UMGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) |
| 28 | 22 27 | mpbird | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ) ) → 𝑆 ∈ UMGraph ) |
| 29 | 28 | ex | ⊢ ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) → ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ) → 𝑆 ∈ UMGraph ) ) |
| 30 | 6 29 | syl | ⊢ ( 𝑆 SubGraph 𝐺 → ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ) → 𝑆 ∈ UMGraph ) ) |
| 31 | 30 | anabsi8 | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑆 SubGraph 𝐺 ) → 𝑆 ∈ UMGraph ) |