This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is at most one morphism in each hom-set. (Contributed by Zhi Wang, 21-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincmo.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | |
| thincmo.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| thincmo.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| thincmo.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| thincmo.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| Assertion | thincmo | ⊢ ( 𝜑 → ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincmo.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | |
| 2 | thincmo.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 3 | thincmo.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 4 | thincmo.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 5 | thincmo.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 6 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝑋 ∈ 𝐵 ) |
| 7 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝑌 ∈ 𝐵 ) |
| 8 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 9 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 10 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝐶 ∈ ThinCat ) |
| 11 | 6 7 8 9 4 5 10 | thincmo2 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝑓 = 𝑔 ) |
| 12 | 11 | ex | ⊢ ( 𝜑 → ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑓 = 𝑔 ) ) |
| 13 | 12 | alrimivv | ⊢ ( 𝜑 → ∀ 𝑓 ∀ 𝑔 ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑓 = 𝑔 ) ) |
| 14 | eleq1w | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↔ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) | |
| 15 | 14 | mo4 | ⊢ ( ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↔ ∀ 𝑓 ∀ 𝑔 ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑓 = 𝑔 ) ) |
| 16 | 13 15 | sylibr | ⊢ ( 𝜑 → ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |