This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for functhinc . Given the object part, there is only one possible morphism part such that the mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | functhinclem1.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| functhinclem1.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | ||
| functhinclem1.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | ||
| functhinclem1.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | ||
| functhinclem1.e | ⊢ ( 𝜑 → 𝐸 ∈ ThinCat ) | ||
| functhinclem1.f | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) | ||
| functhinclem1.k | ⊢ 𝐾 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) | ||
| functhinclem1.1 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) = ∅ → ( 𝑧 𝐻 𝑤 ) = ∅ ) ) | ||
| Assertion | functhinclem1 | ⊢ ( 𝜑 → ( ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ↔ 𝐺 = 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | functhinclem1.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 2 | functhinclem1.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | |
| 3 | functhinclem1.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | |
| 4 | functhinclem1.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | |
| 5 | functhinclem1.e | ⊢ ( 𝜑 → 𝐸 ∈ ThinCat ) | |
| 6 | functhinclem1.f | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) | |
| 7 | functhinclem1.k | ⊢ 𝐾 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 8 | functhinclem1.1 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) = ∅ → ( 𝑧 𝐻 𝑤 ) = ∅ ) ) | |
| 9 | simpl | ⊢ ( ( 𝜑 ∧ ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ) → 𝜑 ) | |
| 10 | simpr2 | ⊢ ( ( 𝜑 ∧ ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ) → 𝐺 Fn ( 𝐵 × 𝐵 ) ) | |
| 11 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ) → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) | |
| 12 | eqid | ⊢ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) = ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) | |
| 13 | 8 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) = ∅ → ( 𝑧 𝐻 𝑤 ) = ∅ ) ) |
| 14 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → 𝐸 ∈ ThinCat ) |
| 15 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 16 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) | |
| 17 | 15 16 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐶 ) |
| 18 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → 𝑤 ∈ 𝐵 ) | |
| 19 | 15 18 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝐶 ) |
| 20 | 14 17 19 2 4 | thincmo | ⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ∃* 𝑚 𝑚 ∈ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) |
| 21 | 12 13 20 | mofeu | ⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ↔ ( 𝑧 𝐺 𝑤 ) = ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ) ) |
| 22 | oveq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 𝐻 𝑦 ) = ( 𝑧 𝐻 𝑦 ) ) | |
| 23 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 24 | 23 | oveq1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
| 25 | 22 24 | xpeq12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝑧 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 26 | oveq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑧 𝐻 𝑦 ) = ( 𝑧 𝐻 𝑤 ) ) | |
| 27 | fveq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑤 ) ) | |
| 28 | 27 | oveq2d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) |
| 29 | 26 28 | xpeq12d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑧 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 30 | ovex | ⊢ ( 𝑧 𝐻 𝑤 ) ∈ V | |
| 31 | ovex | ⊢ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ∈ V | |
| 32 | 30 31 | xpex | ⊢ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ∈ V |
| 33 | 25 29 7 32 | ovmpo | ⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑧 𝐾 𝑤 ) = ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 34 | 33 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑧 𝐾 𝑤 ) = ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 35 | 34 | eqeq2d | ⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑧 𝐺 𝑤 ) = ( 𝑧 𝐾 𝑤 ) ↔ ( 𝑧 𝐺 𝑤 ) = ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ) ) |
| 36 | 21 35 | bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ↔ ( 𝑧 𝐺 𝑤 ) = ( 𝑧 𝐾 𝑤 ) ) ) |
| 37 | 36 | 2ralbidva | ⊢ ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) = ( 𝑧 𝐾 𝑤 ) ) ) |
| 38 | simpr | ⊢ ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) → 𝐺 Fn ( 𝐵 × 𝐵 ) ) | |
| 39 | ovex | ⊢ ( 𝑥 𝐻 𝑦 ) ∈ V | |
| 40 | ovex | ⊢ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∈ V | |
| 41 | 39 40 | xpex | ⊢ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ∈ V |
| 42 | 7 41 | fnmpoi | ⊢ 𝐾 Fn ( 𝐵 × 𝐵 ) |
| 43 | eqfnov2 | ⊢ ( ( 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ 𝐾 Fn ( 𝐵 × 𝐵 ) ) → ( 𝐺 = 𝐾 ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) = ( 𝑧 𝐾 𝑤 ) ) ) | |
| 44 | 38 42 43 | sylancl | ⊢ ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) → ( 𝐺 = 𝐾 ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) = ( 𝑧 𝐾 𝑤 ) ) ) |
| 45 | 37 44 | bitr4d | ⊢ ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ↔ 𝐺 = 𝐾 ) ) |
| 46 | 45 | biimpa | ⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) → 𝐺 = 𝐾 ) |
| 47 | 9 10 11 46 | syl21anc | ⊢ ( ( 𝜑 ∧ ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ) → 𝐺 = 𝐾 ) |
| 48 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 49 | 48 48 | mpoex | ⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) ∈ V |
| 50 | 7 49 | eqeltri | ⊢ 𝐾 ∈ V |
| 51 | eleq1 | ⊢ ( 𝐺 = 𝐾 → ( 𝐺 ∈ V ↔ 𝐾 ∈ V ) ) | |
| 52 | 50 51 | mpbiri | ⊢ ( 𝐺 = 𝐾 → 𝐺 ∈ V ) |
| 53 | 52 | adantl | ⊢ ( ( 𝜑 ∧ 𝐺 = 𝐾 ) → 𝐺 ∈ V ) |
| 54 | fneq1 | ⊢ ( 𝐺 = 𝐾 → ( 𝐺 Fn ( 𝐵 × 𝐵 ) ↔ 𝐾 Fn ( 𝐵 × 𝐵 ) ) ) | |
| 55 | 42 54 | mpbiri | ⊢ ( 𝐺 = 𝐾 → 𝐺 Fn ( 𝐵 × 𝐵 ) ) |
| 56 | 55 | adantl | ⊢ ( ( 𝜑 ∧ 𝐺 = 𝐾 ) → 𝐺 Fn ( 𝐵 × 𝐵 ) ) |
| 57 | simpl | ⊢ ( ( 𝜑 ∧ 𝐺 = 𝐾 ) → 𝜑 ) | |
| 58 | simpr | ⊢ ( ( 𝜑 ∧ 𝐺 = 𝐾 ) → 𝐺 = 𝐾 ) | |
| 59 | 45 | biimpar | ⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ 𝐺 = 𝐾 ) → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) |
| 60 | 57 56 58 59 | syl21anc | ⊢ ( ( 𝜑 ∧ 𝐺 = 𝐾 ) → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) |
| 61 | 53 56 60 | 3jca | ⊢ ( ( 𝜑 ∧ 𝐺 = 𝐾 ) → ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 62 | 47 61 | impbida | ⊢ ( 𝜑 → ( ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ↔ 𝐺 = 𝐾 ) ) |