This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of an absolute value to a subring is an absolute value. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abvres.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| abvres.s | ⊢ 𝑆 = ( 𝑅 ↾s 𝐶 ) | ||
| abvres.b | ⊢ 𝐵 = ( AbsVal ‘ 𝑆 ) | ||
| Assertion | abvres | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝐹 ↾ 𝐶 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abvres.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| 2 | abvres.s | ⊢ 𝑆 = ( 𝑅 ↾s 𝐶 ) | |
| 3 | abvres.b | ⊢ 𝐵 = ( AbsVal ‘ 𝑆 ) | |
| 4 | 3 | a1i | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐵 = ( AbsVal ‘ 𝑆 ) ) |
| 5 | 2 | subrgbas | ⊢ ( 𝐶 ∈ ( SubRing ‘ 𝑅 ) → 𝐶 = ( Base ‘ 𝑆 ) ) |
| 6 | 5 | adantl | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐶 = ( Base ‘ 𝑆 ) ) |
| 7 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 8 | 2 7 | ressplusg | ⊢ ( 𝐶 ∈ ( SubRing ‘ 𝑅 ) → ( +g ‘ 𝑅 ) = ( +g ‘ 𝑆 ) ) |
| 9 | 8 | adantl | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) → ( +g ‘ 𝑅 ) = ( +g ‘ 𝑆 ) ) |
| 10 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 11 | 2 10 | ressmulr | ⊢ ( 𝐶 ∈ ( SubRing ‘ 𝑅 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
| 12 | 11 | adantl | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
| 13 | subrgsubg | ⊢ ( 𝐶 ∈ ( SubRing ‘ 𝑅 ) → 𝐶 ∈ ( SubGrp ‘ 𝑅 ) ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐶 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 15 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 16 | 2 15 | subg0 | ⊢ ( 𝐶 ∈ ( SubGrp ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑆 ) ) |
| 17 | 14 16 | syl | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑆 ) ) |
| 18 | 2 | subrgring | ⊢ ( 𝐶 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring ) |
| 19 | 18 | adantl | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑆 ∈ Ring ) |
| 20 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 21 | 1 20 | abvf | ⊢ ( 𝐹 ∈ 𝐴 → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ℝ ) |
| 22 | 20 | subrgss | ⊢ ( 𝐶 ∈ ( SubRing ‘ 𝑅 ) → 𝐶 ⊆ ( Base ‘ 𝑅 ) ) |
| 23 | fssres | ⊢ ( ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ℝ ∧ 𝐶 ⊆ ( Base ‘ 𝑅 ) ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ ℝ ) | |
| 24 | 21 22 23 | syl2an | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ ℝ ) |
| 25 | 15 | subg0cl | ⊢ ( 𝐶 ∈ ( SubGrp ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) ∈ 𝐶 ) |
| 26 | fvres | ⊢ ( ( 0g ‘ 𝑅 ) ∈ 𝐶 → ( ( 𝐹 ↾ 𝐶 ) ‘ ( 0g ‘ 𝑅 ) ) = ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) | |
| 27 | 14 25 26 | 3syl | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) → ( ( 𝐹 ↾ 𝐶 ) ‘ ( 0g ‘ 𝑅 ) ) = ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) |
| 28 | 1 15 | abv0 | ⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = 0 ) |
| 29 | 28 | adantr | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = 0 ) |
| 30 | 27 29 | eqtrd | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) → ( ( 𝐹 ↾ 𝐶 ) ‘ ( 0g ‘ 𝑅 ) ) = 0 ) |
| 31 | simp1l | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → 𝐹 ∈ 𝐴 ) | |
| 32 | 22 | adantl | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐶 ⊆ ( Base ‘ 𝑅 ) ) |
| 33 | 32 | sselda | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 34 | 33 | 3adant3 | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 35 | simp3 | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → 𝑥 ≠ ( 0g ‘ 𝑅 ) ) | |
| 36 | 1 20 15 | abvgt0 | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → 0 < ( 𝐹 ‘ 𝑥 ) ) |
| 37 | 31 34 35 36 | syl3anc | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → 0 < ( 𝐹 ‘ 𝑥 ) ) |
| 38 | fvres | ⊢ ( 𝑥 ∈ 𝐶 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 39 | 38 | 3ad2ant2 | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 40 | 37 39 | breqtrrd | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → 0 < ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) |
| 41 | simp1l | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝐹 ∈ 𝐴 ) | |
| 42 | simp1r | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 43 | 42 22 | syl | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝐶 ⊆ ( Base ‘ 𝑅 ) ) |
| 44 | simp2l | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑥 ∈ 𝐶 ) | |
| 45 | 43 44 | sseldd | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 46 | simp3l | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑦 ∈ 𝐶 ) | |
| 47 | 43 46 | sseldd | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
| 48 | 1 20 10 | abvmul | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ) |
| 49 | 41 45 47 48 | syl3anc | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ) |
| 50 | 10 | subrgmcl | ⊢ ( ( 𝐶 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐶 ) |
| 51 | 42 44 46 50 | syl3anc | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐶 ) |
| 52 | 51 | fvresd | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( 𝐹 ↾ 𝐶 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
| 53 | 44 | fvresd | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 54 | 46 | fvresd | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 55 | 53 54 | oveq12d | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) · ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ) |
| 56 | 49 52 55 | 3eqtr4d | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( 𝐹 ↾ 𝐶 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) · ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ) ) |
| 57 | 1 20 7 | abvtri | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 58 | 41 45 47 57 | syl3anc | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 59 | 7 | subrgacl | ⊢ ( ( 𝐶 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐶 ) |
| 60 | 42 44 46 59 | syl3anc | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐶 ) |
| 61 | 60 | fvresd | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( 𝐹 ↾ 𝐶 ) ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) |
| 62 | 53 54 | oveq12d | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) + ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 63 | 58 61 62 | 3brtr4d | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( 𝐹 ↾ 𝐶 ) ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) + ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ) ) |
| 64 | 4 6 9 12 17 19 24 30 40 56 63 | isabvd | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝐹 ↾ 𝐶 ) ∈ 𝐵 ) |