This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring of the base ring induces a subring of polynomials. (Contributed by Mario Carneiro, 3-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrgmpl.s | ⊢ 𝑆 = ( 𝐼 mPoly 𝑅 ) | |
| subrgmpl.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | ||
| subrgmpl.u | ⊢ 𝑈 = ( 𝐼 mPoly 𝐻 ) | ||
| subrgmpl.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | ||
| Assertion | subrgmpl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgmpl.s | ⊢ 𝑆 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | subrgmpl.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | |
| 3 | subrgmpl.u | ⊢ 𝑈 = ( 𝐼 mPoly 𝐻 ) | |
| 4 | subrgmpl.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | |
| 5 | simpl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐼 ∈ 𝑉 ) | |
| 6 | simpr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 7 | eqid | ⊢ ( 𝐼 mPwSer 𝐻 ) = ( 𝐼 mPwSer 𝐻 ) | |
| 8 | eqid | ⊢ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) | |
| 9 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 10 | 1 2 3 4 5 6 7 8 9 | ressmplbas2 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐵 = ( ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ∩ ( Base ‘ 𝑆 ) ) ) |
| 11 | eqid | ⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) | |
| 12 | 11 2 7 8 | subrgpsr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 13 | subrgrcl | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
| 15 | 11 1 9 5 14 | mplsubrg | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → ( Base ‘ 𝑆 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 16 | subrgin | ⊢ ( ( ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( Base ‘ 𝑆 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) → ( ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ∩ ( Base ‘ 𝑆 ) ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) | |
| 17 | 12 15 16 | syl2anc | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → ( ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ∩ ( Base ‘ 𝑆 ) ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 18 | 10 17 | eqeltrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐵 ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 19 | inss2 | ⊢ ( ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ∩ ( Base ‘ 𝑆 ) ) ⊆ ( Base ‘ 𝑆 ) | |
| 20 | 10 19 | eqsstrdi | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 21 | 1 11 9 | mplval2 | ⊢ 𝑆 = ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ 𝑆 ) ) |
| 22 | 21 | subsubrg | ⊢ ( ( Base ‘ 𝑆 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) → ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) ↔ ( 𝐵 ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝐵 ⊆ ( Base ‘ 𝑆 ) ) ) ) |
| 23 | 15 22 | syl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) ↔ ( 𝐵 ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝐵 ⊆ ( Base ‘ 𝑆 ) ) ) ) |
| 24 | 18 20 23 | mpbir2and | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |