This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of a restricted polynomial algebra consists of power series in the subring which are also polynomials (in the parent ring). (Contributed by Mario Carneiro, 3-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressmpl.s | ⊢ 𝑆 = ( 𝐼 mPoly 𝑅 ) | |
| ressmpl.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | ||
| ressmpl.u | ⊢ 𝑈 = ( 𝐼 mPoly 𝐻 ) | ||
| ressmpl.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | ||
| ressmpl.1 | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| ressmpl.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | ||
| ressmplbas2.w | ⊢ 𝑊 = ( 𝐼 mPwSer 𝐻 ) | ||
| ressmplbas2.c | ⊢ 𝐶 = ( Base ‘ 𝑊 ) | ||
| ressmplbas2.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| Assertion | ressmplbas2 | ⊢ ( 𝜑 → 𝐵 = ( 𝐶 ∩ 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressmpl.s | ⊢ 𝑆 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | ressmpl.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | |
| 3 | ressmpl.u | ⊢ 𝑈 = ( 𝐼 mPoly 𝐻 ) | |
| 4 | ressmpl.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | |
| 5 | ressmpl.1 | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 6 | ressmpl.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 7 | ressmplbas2.w | ⊢ 𝑊 = ( 𝐼 mPwSer 𝐻 ) | |
| 8 | ressmplbas2.c | ⊢ 𝐶 = ( Base ‘ 𝑊 ) | |
| 9 | ressmplbas2.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 10 | eqid | ⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) | |
| 11 | 10 2 7 8 | subrgpsr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐶 ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 12 | 5 6 11 | syl2anc | ⊢ ( 𝜑 → 𝐶 ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 13 | eqid | ⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) | |
| 14 | 13 | subrgss | ⊢ ( 𝐶 ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) → 𝐶 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 15 | 12 14 | syl | ⊢ ( 𝜑 → 𝐶 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 16 | dfss2 | ⊢ ( 𝐶 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ↔ ( 𝐶 ∩ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) = 𝐶 ) | |
| 17 | 15 16 | sylib | ⊢ ( 𝜑 → ( 𝐶 ∩ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) = 𝐶 ) |
| 18 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 19 | 2 18 | subrg0 | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝐻 ) ) |
| 20 | 6 19 | syl | ⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝐻 ) ) |
| 21 | 20 | breq2d | ⊢ ( 𝜑 → ( 𝑓 finSupp ( 0g ‘ 𝑅 ) ↔ 𝑓 finSupp ( 0g ‘ 𝐻 ) ) ) |
| 22 | 21 | abbidv | ⊢ ( 𝜑 → { 𝑓 ∣ 𝑓 finSupp ( 0g ‘ 𝑅 ) } = { 𝑓 ∣ 𝑓 finSupp ( 0g ‘ 𝐻 ) } ) |
| 23 | 17 22 | ineq12d | ⊢ ( 𝜑 → ( ( 𝐶 ∩ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ∩ { 𝑓 ∣ 𝑓 finSupp ( 0g ‘ 𝑅 ) } ) = ( 𝐶 ∩ { 𝑓 ∣ 𝑓 finSupp ( 0g ‘ 𝐻 ) } ) ) |
| 24 | 23 | eqcomd | ⊢ ( 𝜑 → ( 𝐶 ∩ { 𝑓 ∣ 𝑓 finSupp ( 0g ‘ 𝐻 ) } ) = ( ( 𝐶 ∩ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ∩ { 𝑓 ∣ 𝑓 finSupp ( 0g ‘ 𝑅 ) } ) ) |
| 25 | eqid | ⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) | |
| 26 | 3 7 8 25 4 | mplbas | ⊢ 𝐵 = { 𝑓 ∈ 𝐶 ∣ 𝑓 finSupp ( 0g ‘ 𝐻 ) } |
| 27 | dfrab3 | ⊢ { 𝑓 ∈ 𝐶 ∣ 𝑓 finSupp ( 0g ‘ 𝐻 ) } = ( 𝐶 ∩ { 𝑓 ∣ 𝑓 finSupp ( 0g ‘ 𝐻 ) } ) | |
| 28 | 26 27 | eqtri | ⊢ 𝐵 = ( 𝐶 ∩ { 𝑓 ∣ 𝑓 finSupp ( 0g ‘ 𝐻 ) } ) |
| 29 | 1 10 13 18 9 | mplbas | ⊢ 𝐾 = { 𝑓 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∣ 𝑓 finSupp ( 0g ‘ 𝑅 ) } |
| 30 | dfrab3 | ⊢ { 𝑓 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∣ 𝑓 finSupp ( 0g ‘ 𝑅 ) } = ( ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∩ { 𝑓 ∣ 𝑓 finSupp ( 0g ‘ 𝑅 ) } ) | |
| 31 | 29 30 | eqtri | ⊢ 𝐾 = ( ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∩ { 𝑓 ∣ 𝑓 finSupp ( 0g ‘ 𝑅 ) } ) |
| 32 | 31 | ineq2i | ⊢ ( 𝐶 ∩ 𝐾 ) = ( 𝐶 ∩ ( ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∩ { 𝑓 ∣ 𝑓 finSupp ( 0g ‘ 𝑅 ) } ) ) |
| 33 | inass | ⊢ ( ( 𝐶 ∩ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ∩ { 𝑓 ∣ 𝑓 finSupp ( 0g ‘ 𝑅 ) } ) = ( 𝐶 ∩ ( ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∩ { 𝑓 ∣ 𝑓 finSupp ( 0g ‘ 𝑅 ) } ) ) | |
| 34 | 32 33 | eqtr4i | ⊢ ( 𝐶 ∩ 𝐾 ) = ( ( 𝐶 ∩ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ∩ { 𝑓 ∣ 𝑓 finSupp ( 0g ‘ 𝑅 ) } ) |
| 35 | 24 28 34 | 3eqtr4g | ⊢ ( 𝜑 → 𝐵 = ( 𝐶 ∩ 𝐾 ) ) |