This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of two subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014) (Revised by Mario Carneiro, 7-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subrgin | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝐴 ∩ 𝐵 ) ∈ ( SubRing ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intprg | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) → ∩ { 𝐴 , 𝐵 } = ( 𝐴 ∩ 𝐵 ) ) | |
| 2 | prssi | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) → { 𝐴 , 𝐵 } ⊆ ( SubRing ‘ 𝑅 ) ) | |
| 3 | prnzg | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → { 𝐴 , 𝐵 } ≠ ∅ ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) → { 𝐴 , 𝐵 } ≠ ∅ ) |
| 5 | subrgint | ⊢ ( ( { 𝐴 , 𝐵 } ⊆ ( SubRing ‘ 𝑅 ) ∧ { 𝐴 , 𝐵 } ≠ ∅ ) → ∩ { 𝐴 , 𝐵 } ∈ ( SubRing ‘ 𝑅 ) ) | |
| 6 | 2 4 5 | syl2anc | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) → ∩ { 𝐴 , 𝐵 } ∈ ( SubRing ‘ 𝑅 ) ) |
| 7 | 1 6 | eqeltrrd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝐴 ∩ 𝐵 ) ∈ ( SubRing ‘ 𝑅 ) ) |