This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a nonempty collection of subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014) (Revised by Mario Carneiro, 7-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subrgint | ⊢ ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgsubg | ⊢ ( 𝑟 ∈ ( SubRing ‘ 𝑅 ) → 𝑟 ∈ ( SubGrp ‘ 𝑅 ) ) | |
| 2 | 1 | ssriv | ⊢ ( SubRing ‘ 𝑅 ) ⊆ ( SubGrp ‘ 𝑅 ) |
| 3 | sstr | ⊢ ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ ( SubRing ‘ 𝑅 ) ⊆ ( SubGrp ‘ 𝑅 ) ) → 𝑆 ⊆ ( SubGrp ‘ 𝑅 ) ) | |
| 4 | 2 3 | mpan2 | ⊢ ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) → 𝑆 ⊆ ( SubGrp ‘ 𝑅 ) ) |
| 5 | subgint | ⊢ ( ( 𝑆 ⊆ ( SubGrp ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) | |
| 6 | 4 5 | sylan | ⊢ ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 7 | ssel2 | ⊢ ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑟 ∈ 𝑆 ) → 𝑟 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 8 | 7 | adantlr | ⊢ ( ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝑆 ) → 𝑟 ∈ ( SubRing ‘ 𝑅 ) ) |
| 9 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 10 | 9 | subrg1cl | ⊢ ( 𝑟 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) ∈ 𝑟 ) |
| 11 | 8 10 | syl | ⊢ ( ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝑆 ) → ( 1r ‘ 𝑅 ) ∈ 𝑟 ) |
| 12 | 11 | ralrimiva | ⊢ ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ∀ 𝑟 ∈ 𝑆 ( 1r ‘ 𝑅 ) ∈ 𝑟 ) |
| 13 | fvex | ⊢ ( 1r ‘ 𝑅 ) ∈ V | |
| 14 | 13 | elint2 | ⊢ ( ( 1r ‘ 𝑅 ) ∈ ∩ 𝑆 ↔ ∀ 𝑟 ∈ 𝑆 ( 1r ‘ 𝑅 ) ∈ 𝑟 ) |
| 15 | 12 14 | sylibr | ⊢ ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ( 1r ‘ 𝑅 ) ∈ ∩ 𝑆 ) |
| 16 | 8 | adantlr | ⊢ ( ( ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) ∧ 𝑟 ∈ 𝑆 ) → 𝑟 ∈ ( SubRing ‘ 𝑅 ) ) |
| 17 | simprl | ⊢ ( ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) → 𝑥 ∈ ∩ 𝑆 ) | |
| 18 | elinti | ⊢ ( 𝑥 ∈ ∩ 𝑆 → ( 𝑟 ∈ 𝑆 → 𝑥 ∈ 𝑟 ) ) | |
| 19 | 18 | imp | ⊢ ( ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑟 ∈ 𝑆 ) → 𝑥 ∈ 𝑟 ) |
| 20 | 17 19 | sylan | ⊢ ( ( ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) ∧ 𝑟 ∈ 𝑆 ) → 𝑥 ∈ 𝑟 ) |
| 21 | simprr | ⊢ ( ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) → 𝑦 ∈ ∩ 𝑆 ) | |
| 22 | elinti | ⊢ ( 𝑦 ∈ ∩ 𝑆 → ( 𝑟 ∈ 𝑆 → 𝑦 ∈ 𝑟 ) ) | |
| 23 | 22 | imp | ⊢ ( ( 𝑦 ∈ ∩ 𝑆 ∧ 𝑟 ∈ 𝑆 ) → 𝑦 ∈ 𝑟 ) |
| 24 | 21 23 | sylan | ⊢ ( ( ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) ∧ 𝑟 ∈ 𝑆 ) → 𝑦 ∈ 𝑟 ) |
| 25 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 26 | 25 | subrgmcl | ⊢ ( ( 𝑟 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑟 ∧ 𝑦 ∈ 𝑟 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑟 ) |
| 27 | 16 20 24 26 | syl3anc | ⊢ ( ( ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) ∧ 𝑟 ∈ 𝑆 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑟 ) |
| 28 | 27 | ralrimiva | ⊢ ( ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) → ∀ 𝑟 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑟 ) |
| 29 | ovex | ⊢ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ V | |
| 30 | 29 | elint2 | ⊢ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ∩ 𝑆 ↔ ∀ 𝑟 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑟 ) |
| 31 | 28 30 | sylibr | ⊢ ( ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ∩ 𝑆 ) |
| 32 | 31 | ralrimivva | ⊢ ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ∀ 𝑥 ∈ ∩ 𝑆 ∀ 𝑦 ∈ ∩ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ∩ 𝑆 ) |
| 33 | ssn0 | ⊢ ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ( SubRing ‘ 𝑅 ) ≠ ∅ ) | |
| 34 | n0 | ⊢ ( ( SubRing ‘ 𝑅 ) ≠ ∅ ↔ ∃ 𝑟 𝑟 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 35 | subrgrcl | ⊢ ( 𝑟 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) | |
| 36 | 35 | exlimiv | ⊢ ( ∃ 𝑟 𝑟 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) |
| 37 | 34 36 | sylbi | ⊢ ( ( SubRing ‘ 𝑅 ) ≠ ∅ → 𝑅 ∈ Ring ) |
| 38 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 39 | 38 9 25 | issubrg2 | ⊢ ( 𝑅 ∈ Ring → ( ∩ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ↔ ( ∩ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ ∩ 𝑆 ∧ ∀ 𝑥 ∈ ∩ 𝑆 ∀ 𝑦 ∈ ∩ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ∩ 𝑆 ) ) ) |
| 40 | 33 37 39 | 3syl | ⊢ ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ( ∩ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ↔ ( ∩ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ ∩ 𝑆 ∧ ∀ 𝑥 ∈ ∩ 𝑆 ∀ 𝑦 ∈ ∩ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ∩ 𝑆 ) ) ) |
| 41 | 6 15 32 40 | mpbir3and | ⊢ ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |