This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a nonempty collection of subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014) (Revised by Mario Carneiro, 7-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subrgint | |- ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) -> |^| S e. ( SubRing ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgsubg | |- ( r e. ( SubRing ` R ) -> r e. ( SubGrp ` R ) ) |
|
| 2 | 1 | ssriv | |- ( SubRing ` R ) C_ ( SubGrp ` R ) |
| 3 | sstr | |- ( ( S C_ ( SubRing ` R ) /\ ( SubRing ` R ) C_ ( SubGrp ` R ) ) -> S C_ ( SubGrp ` R ) ) |
|
| 4 | 2 3 | mpan2 | |- ( S C_ ( SubRing ` R ) -> S C_ ( SubGrp ` R ) ) |
| 5 | subgint | |- ( ( S C_ ( SubGrp ` R ) /\ S =/= (/) ) -> |^| S e. ( SubGrp ` R ) ) |
|
| 6 | 4 5 | sylan | |- ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) -> |^| S e. ( SubGrp ` R ) ) |
| 7 | ssel2 | |- ( ( S C_ ( SubRing ` R ) /\ r e. S ) -> r e. ( SubRing ` R ) ) |
|
| 8 | 7 | adantlr | |- ( ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) /\ r e. S ) -> r e. ( SubRing ` R ) ) |
| 9 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 10 | 9 | subrg1cl | |- ( r e. ( SubRing ` R ) -> ( 1r ` R ) e. r ) |
| 11 | 8 10 | syl | |- ( ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) /\ r e. S ) -> ( 1r ` R ) e. r ) |
| 12 | 11 | ralrimiva | |- ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) -> A. r e. S ( 1r ` R ) e. r ) |
| 13 | fvex | |- ( 1r ` R ) e. _V |
|
| 14 | 13 | elint2 | |- ( ( 1r ` R ) e. |^| S <-> A. r e. S ( 1r ` R ) e. r ) |
| 15 | 12 14 | sylibr | |- ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) -> ( 1r ` R ) e. |^| S ) |
| 16 | 8 | adantlr | |- ( ( ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ r e. S ) -> r e. ( SubRing ` R ) ) |
| 17 | simprl | |- ( ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> x e. |^| S ) |
|
| 18 | elinti | |- ( x e. |^| S -> ( r e. S -> x e. r ) ) |
|
| 19 | 18 | imp | |- ( ( x e. |^| S /\ r e. S ) -> x e. r ) |
| 20 | 17 19 | sylan | |- ( ( ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ r e. S ) -> x e. r ) |
| 21 | simprr | |- ( ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> y e. |^| S ) |
|
| 22 | elinti | |- ( y e. |^| S -> ( r e. S -> y e. r ) ) |
|
| 23 | 22 | imp | |- ( ( y e. |^| S /\ r e. S ) -> y e. r ) |
| 24 | 21 23 | sylan | |- ( ( ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ r e. S ) -> y e. r ) |
| 25 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 26 | 25 | subrgmcl | |- ( ( r e. ( SubRing ` R ) /\ x e. r /\ y e. r ) -> ( x ( .r ` R ) y ) e. r ) |
| 27 | 16 20 24 26 | syl3anc | |- ( ( ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ r e. S ) -> ( x ( .r ` R ) y ) e. r ) |
| 28 | 27 | ralrimiva | |- ( ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> A. r e. S ( x ( .r ` R ) y ) e. r ) |
| 29 | ovex | |- ( x ( .r ` R ) y ) e. _V |
|
| 30 | 29 | elint2 | |- ( ( x ( .r ` R ) y ) e. |^| S <-> A. r e. S ( x ( .r ` R ) y ) e. r ) |
| 31 | 28 30 | sylibr | |- ( ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> ( x ( .r ` R ) y ) e. |^| S ) |
| 32 | 31 | ralrimivva | |- ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) -> A. x e. |^| S A. y e. |^| S ( x ( .r ` R ) y ) e. |^| S ) |
| 33 | ssn0 | |- ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) -> ( SubRing ` R ) =/= (/) ) |
|
| 34 | n0 | |- ( ( SubRing ` R ) =/= (/) <-> E. r r e. ( SubRing ` R ) ) |
|
| 35 | subrgrcl | |- ( r e. ( SubRing ` R ) -> R e. Ring ) |
|
| 36 | 35 | exlimiv | |- ( E. r r e. ( SubRing ` R ) -> R e. Ring ) |
| 37 | 34 36 | sylbi | |- ( ( SubRing ` R ) =/= (/) -> R e. Ring ) |
| 38 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 39 | 38 9 25 | issubrg2 | |- ( R e. Ring -> ( |^| S e. ( SubRing ` R ) <-> ( |^| S e. ( SubGrp ` R ) /\ ( 1r ` R ) e. |^| S /\ A. x e. |^| S A. y e. |^| S ( x ( .r ` R ) y ) e. |^| S ) ) ) |
| 40 | 33 37 39 | 3syl | |- ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) -> ( |^| S e. ( SubRing ` R ) <-> ( |^| S e. ( SubGrp ` R ) /\ ( 1r ` R ) e. |^| S /\ A. x e. |^| S A. y e. |^| S ( x ( .r ` R ) y ) e. |^| S ) ) ) |
| 41 | 6 15 32 40 | mpbir3and | |- ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) -> |^| S e. ( SubRing ` R ) ) |