This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An edge of a subgraph of a hypergraph is a nonempty subset of its vertices. (Contributed by AV, 17-Nov-2020) (Revised by AV, 21-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subgruhgredgd.v | |- V = ( Vtx ` S ) |
|
| subgruhgredgd.i | |- I = ( iEdg ` S ) |
||
| subgruhgredgd.g | |- ( ph -> G e. UHGraph ) |
||
| subgruhgredgd.s | |- ( ph -> S SubGraph G ) |
||
| subgruhgredgd.x | |- ( ph -> X e. dom I ) |
||
| Assertion | subgruhgredgd | |- ( ph -> ( I ` X ) e. ( ~P V \ { (/) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgruhgredgd.v | |- V = ( Vtx ` S ) |
|
| 2 | subgruhgredgd.i | |- I = ( iEdg ` S ) |
|
| 3 | subgruhgredgd.g | |- ( ph -> G e. UHGraph ) |
|
| 4 | subgruhgredgd.s | |- ( ph -> S SubGraph G ) |
|
| 5 | subgruhgredgd.x | |- ( ph -> X e. dom I ) |
|
| 6 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 7 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 8 | eqid | |- ( Edg ` S ) = ( Edg ` S ) |
|
| 9 | 1 6 2 7 8 | subgrprop2 | |- ( S SubGraph G -> ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) |
| 10 | 4 9 | syl | |- ( ph -> ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) |
| 11 | simpr3 | |- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> ( Edg ` S ) C_ ~P V ) |
|
| 12 | subgruhgrfun | |- ( ( G e. UHGraph /\ S SubGraph G ) -> Fun ( iEdg ` S ) ) |
|
| 13 | 3 4 12 | syl2anc | |- ( ph -> Fun ( iEdg ` S ) ) |
| 14 | 2 | dmeqi | |- dom I = dom ( iEdg ` S ) |
| 15 | 5 14 | eleqtrdi | |- ( ph -> X e. dom ( iEdg ` S ) ) |
| 16 | 13 15 | jca | |- ( ph -> ( Fun ( iEdg ` S ) /\ X e. dom ( iEdg ` S ) ) ) |
| 17 | 16 | adantr | |- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> ( Fun ( iEdg ` S ) /\ X e. dom ( iEdg ` S ) ) ) |
| 18 | 2 | fveq1i | |- ( I ` X ) = ( ( iEdg ` S ) ` X ) |
| 19 | fvelrn | |- ( ( Fun ( iEdg ` S ) /\ X e. dom ( iEdg ` S ) ) -> ( ( iEdg ` S ) ` X ) e. ran ( iEdg ` S ) ) |
|
| 20 | 18 19 | eqeltrid | |- ( ( Fun ( iEdg ` S ) /\ X e. dom ( iEdg ` S ) ) -> ( I ` X ) e. ran ( iEdg ` S ) ) |
| 21 | 17 20 | syl | |- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> ( I ` X ) e. ran ( iEdg ` S ) ) |
| 22 | edgval | |- ( Edg ` S ) = ran ( iEdg ` S ) |
|
| 23 | 21 22 | eleqtrrdi | |- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> ( I ` X ) e. ( Edg ` S ) ) |
| 24 | 11 23 | sseldd | |- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> ( I ` X ) e. ~P V ) |
| 25 | 7 | uhgrfun | |- ( G e. UHGraph -> Fun ( iEdg ` G ) ) |
| 26 | 3 25 | syl | |- ( ph -> Fun ( iEdg ` G ) ) |
| 27 | 26 | adantr | |- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> Fun ( iEdg ` G ) ) |
| 28 | simpr2 | |- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> I C_ ( iEdg ` G ) ) |
|
| 29 | 5 | adantr | |- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> X e. dom I ) |
| 30 | funssfv | |- ( ( Fun ( iEdg ` G ) /\ I C_ ( iEdg ` G ) /\ X e. dom I ) -> ( ( iEdg ` G ) ` X ) = ( I ` X ) ) |
|
| 31 | 30 | eqcomd | |- ( ( Fun ( iEdg ` G ) /\ I C_ ( iEdg ` G ) /\ X e. dom I ) -> ( I ` X ) = ( ( iEdg ` G ) ` X ) ) |
| 32 | 27 28 29 31 | syl3anc | |- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> ( I ` X ) = ( ( iEdg ` G ) ` X ) ) |
| 33 | 3 | adantr | |- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> G e. UHGraph ) |
| 34 | 26 | funfnd | |- ( ph -> ( iEdg ` G ) Fn dom ( iEdg ` G ) ) |
| 35 | 34 | adantr | |- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> ( iEdg ` G ) Fn dom ( iEdg ` G ) ) |
| 36 | subgreldmiedg | |- ( ( S SubGraph G /\ X e. dom ( iEdg ` S ) ) -> X e. dom ( iEdg ` G ) ) |
|
| 37 | 4 15 36 | syl2anc | |- ( ph -> X e. dom ( iEdg ` G ) ) |
| 38 | 37 | adantr | |- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> X e. dom ( iEdg ` G ) ) |
| 39 | 7 | uhgrn0 | |- ( ( G e. UHGraph /\ ( iEdg ` G ) Fn dom ( iEdg ` G ) /\ X e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` X ) =/= (/) ) |
| 40 | 33 35 38 39 | syl3anc | |- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> ( ( iEdg ` G ) ` X ) =/= (/) ) |
| 41 | 32 40 | eqnetrd | |- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> ( I ` X ) =/= (/) ) |
| 42 | eldifsn | |- ( ( I ` X ) e. ( ~P V \ { (/) } ) <-> ( ( I ` X ) e. ~P V /\ ( I ` X ) =/= (/) ) ) |
|
| 43 | 24 41 42 | sylanbrc | |- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> ( I ` X ) e. ( ~P V \ { (/) } ) ) |
| 44 | 10 43 | mpdan | |- ( ph -> ( I ` X ) e. ( ~P V \ { (/) } ) ) |