This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An edge is a nonempty subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015) (Revised by AV, 15-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uhgrfun.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| Assertion | uhgrn0 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴 ) → ( 𝐸 ‘ 𝐹 ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrfun.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 3 | 2 1 | uhgrf | ⊢ ( 𝐺 ∈ UHGraph → 𝐸 : dom 𝐸 ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
| 4 | fndm | ⊢ ( 𝐸 Fn 𝐴 → dom 𝐸 = 𝐴 ) | |
| 5 | 4 | feq2d | ⊢ ( 𝐸 Fn 𝐴 → ( 𝐸 : dom 𝐸 ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ↔ 𝐸 : 𝐴 ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) ) |
| 6 | 3 5 | syl5ibcom | ⊢ ( 𝐺 ∈ UHGraph → ( 𝐸 Fn 𝐴 → 𝐸 : 𝐴 ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) ) |
| 7 | 6 | imp | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴 ) → 𝐸 : 𝐴 ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
| 8 | 7 | ffvelcdmda | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴 ) ∧ 𝐹 ∈ 𝐴 ) → ( 𝐸 ‘ 𝐹 ) ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
| 9 | 8 | 3impa | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴 ) → ( 𝐸 ‘ 𝐹 ) ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
| 10 | eldifsni | ⊢ ( ( 𝐸 ‘ 𝐹 ) ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) → ( 𝐸 ‘ 𝐹 ) ≠ ∅ ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴 ) → ( 𝐸 ‘ 𝐹 ) ≠ ∅ ) |