This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgroup acts on its parent group. (Contributed by Jeff Hankins, 13-Aug-2009) (Proof shortened by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subgga.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| subgga.2 | ⊢ + = ( +g ‘ 𝐺 ) | ||
| subgga.3 | ⊢ 𝐻 = ( 𝐺 ↾s 𝑌 ) | ||
| subgga.4 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑌 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 + 𝑦 ) ) | ||
| Assertion | subgga | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝐹 ∈ ( 𝐻 GrpAct 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgga.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | subgga.2 | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | subgga.3 | ⊢ 𝐻 = ( 𝐺 ↾s 𝑌 ) | |
| 4 | subgga.4 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑌 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 + 𝑦 ) ) | |
| 5 | 3 | subggrp | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |
| 6 | 1 | fvexi | ⊢ 𝑋 ∈ V |
| 7 | 5 6 | jctir | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐻 ∈ Grp ∧ 𝑋 ∈ V ) ) |
| 8 | subgrcl | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ) → 𝐺 ∈ Grp ) |
| 10 | 1 | subgss | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝑌 ⊆ 𝑋 ) |
| 11 | 10 | sselda | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ 𝑋 ) |
| 12 | 11 | adantrr | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑋 ) |
| 13 | simprr | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑦 ∈ 𝑋 ) | |
| 14 | 1 2 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 + 𝑦 ) ∈ 𝑋 ) |
| 15 | 9 12 13 14 | syl3anc | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑋 ) |
| 16 | 15 | ralrimivva | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑋 ( 𝑥 + 𝑦 ) ∈ 𝑋 ) |
| 17 | 4 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑋 ( 𝑥 + 𝑦 ) ∈ 𝑋 ↔ 𝐹 : ( 𝑌 × 𝑋 ) ⟶ 𝑋 ) |
| 18 | 16 17 | sylib | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝐹 : ( 𝑌 × 𝑋 ) ⟶ 𝑋 ) |
| 19 | 3 | subgbas | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝑌 = ( Base ‘ 𝐻 ) ) |
| 20 | 19 | xpeq1d | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑌 × 𝑋 ) = ( ( Base ‘ 𝐻 ) × 𝑋 ) ) |
| 21 | 20 | feq2d | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐹 : ( 𝑌 × 𝑋 ) ⟶ 𝑋 ↔ 𝐹 : ( ( Base ‘ 𝐻 ) × 𝑋 ) ⟶ 𝑋 ) ) |
| 22 | 18 21 | mpbid | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝐹 : ( ( Base ‘ 𝐻 ) × 𝑋 ) ⟶ 𝑋 ) |
| 23 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 24 | 23 | subg0cl | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑌 ) |
| 25 | oveq12 | ⊢ ( ( 𝑥 = ( 0g ‘ 𝐺 ) ∧ 𝑦 = 𝑢 ) → ( 𝑥 + 𝑦 ) = ( ( 0g ‘ 𝐺 ) + 𝑢 ) ) | |
| 26 | ovex | ⊢ ( ( 0g ‘ 𝐺 ) + 𝑢 ) ∈ V | |
| 27 | 25 4 26 | ovmpoa | ⊢ ( ( ( 0g ‘ 𝐺 ) ∈ 𝑌 ∧ 𝑢 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) 𝐹 𝑢 ) = ( ( 0g ‘ 𝐺 ) + 𝑢 ) ) |
| 28 | 24 27 | sylan | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) 𝐹 𝑢 ) = ( ( 0g ‘ 𝐺 ) + 𝑢 ) ) |
| 29 | 3 23 | subg0 | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
| 30 | 29 | oveq1d | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( ( 0g ‘ 𝐺 ) 𝐹 𝑢 ) = ( ( 0g ‘ 𝐻 ) 𝐹 𝑢 ) ) |
| 31 | 30 | adantr | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) 𝐹 𝑢 ) = ( ( 0g ‘ 𝐻 ) 𝐹 𝑢 ) ) |
| 32 | 1 2 23 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + 𝑢 ) = 𝑢 ) |
| 33 | 8 32 | sylan | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + 𝑢 ) = 𝑢 ) |
| 34 | 28 31 33 | 3eqtr3d | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 0g ‘ 𝐻 ) 𝐹 𝑢 ) = 𝑢 ) |
| 35 | 8 | ad2antrr | ⊢ ( ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑢 ∈ 𝑋 ) ∧ ( 𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → 𝐺 ∈ Grp ) |
| 36 | 10 | ad2antrr | ⊢ ( ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑢 ∈ 𝑋 ) ∧ ( 𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → 𝑌 ⊆ 𝑋 ) |
| 37 | simprl | ⊢ ( ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑢 ∈ 𝑋 ) ∧ ( 𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → 𝑣 ∈ 𝑌 ) | |
| 38 | 36 37 | sseldd | ⊢ ( ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑢 ∈ 𝑋 ) ∧ ( 𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → 𝑣 ∈ 𝑋 ) |
| 39 | simprr | ⊢ ( ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑢 ∈ 𝑋 ) ∧ ( 𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → 𝑤 ∈ 𝑌 ) | |
| 40 | 36 39 | sseldd | ⊢ ( ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑢 ∈ 𝑋 ) ∧ ( 𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → 𝑤 ∈ 𝑋 ) |
| 41 | simplr | ⊢ ( ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑢 ∈ 𝑋 ) ∧ ( 𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → 𝑢 ∈ 𝑋 ) | |
| 42 | 1 2 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑣 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋 ) ) → ( ( 𝑣 + 𝑤 ) + 𝑢 ) = ( 𝑣 + ( 𝑤 + 𝑢 ) ) ) |
| 43 | 35 38 40 41 42 | syl13anc | ⊢ ( ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑢 ∈ 𝑋 ) ∧ ( 𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( ( 𝑣 + 𝑤 ) + 𝑢 ) = ( 𝑣 + ( 𝑤 + 𝑢 ) ) ) |
| 44 | 1 2 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑤 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋 ) → ( 𝑤 + 𝑢 ) ∈ 𝑋 ) |
| 45 | 35 40 41 44 | syl3anc | ⊢ ( ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑢 ∈ 𝑋 ) ∧ ( 𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( 𝑤 + 𝑢 ) ∈ 𝑋 ) |
| 46 | oveq12 | ⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = ( 𝑤 + 𝑢 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑣 + ( 𝑤 + 𝑢 ) ) ) | |
| 47 | ovex | ⊢ ( 𝑣 + ( 𝑤 + 𝑢 ) ) ∈ V | |
| 48 | 46 4 47 | ovmpoa | ⊢ ( ( 𝑣 ∈ 𝑌 ∧ ( 𝑤 + 𝑢 ) ∈ 𝑋 ) → ( 𝑣 𝐹 ( 𝑤 + 𝑢 ) ) = ( 𝑣 + ( 𝑤 + 𝑢 ) ) ) |
| 49 | 37 45 48 | syl2anc | ⊢ ( ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑢 ∈ 𝑋 ) ∧ ( 𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( 𝑣 𝐹 ( 𝑤 + 𝑢 ) ) = ( 𝑣 + ( 𝑤 + 𝑢 ) ) ) |
| 50 | 43 49 | eqtr4d | ⊢ ( ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑢 ∈ 𝑋 ) ∧ ( 𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( ( 𝑣 + 𝑤 ) + 𝑢 ) = ( 𝑣 𝐹 ( 𝑤 + 𝑢 ) ) ) |
| 51 | 2 | subgcl | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) → ( 𝑣 + 𝑤 ) ∈ 𝑌 ) |
| 52 | 51 | 3expb | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( 𝑣 + 𝑤 ) ∈ 𝑌 ) |
| 53 | 52 | adantlr | ⊢ ( ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑢 ∈ 𝑋 ) ∧ ( 𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( 𝑣 + 𝑤 ) ∈ 𝑌 ) |
| 54 | oveq12 | ⊢ ( ( 𝑥 = ( 𝑣 + 𝑤 ) ∧ 𝑦 = 𝑢 ) → ( 𝑥 + 𝑦 ) = ( ( 𝑣 + 𝑤 ) + 𝑢 ) ) | |
| 55 | ovex | ⊢ ( ( 𝑣 + 𝑤 ) + 𝑢 ) ∈ V | |
| 56 | 54 4 55 | ovmpoa | ⊢ ( ( ( 𝑣 + 𝑤 ) ∈ 𝑌 ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑣 + 𝑤 ) 𝐹 𝑢 ) = ( ( 𝑣 + 𝑤 ) + 𝑢 ) ) |
| 57 | 53 41 56 | syl2anc | ⊢ ( ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑢 ∈ 𝑋 ) ∧ ( 𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( ( 𝑣 + 𝑤 ) 𝐹 𝑢 ) = ( ( 𝑣 + 𝑤 ) + 𝑢 ) ) |
| 58 | oveq12 | ⊢ ( ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑢 ) → ( 𝑥 + 𝑦 ) = ( 𝑤 + 𝑢 ) ) | |
| 59 | ovex | ⊢ ( 𝑤 + 𝑢 ) ∈ V | |
| 60 | 58 4 59 | ovmpoa | ⊢ ( ( 𝑤 ∈ 𝑌 ∧ 𝑢 ∈ 𝑋 ) → ( 𝑤 𝐹 𝑢 ) = ( 𝑤 + 𝑢 ) ) |
| 61 | 39 41 60 | syl2anc | ⊢ ( ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑢 ∈ 𝑋 ) ∧ ( 𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( 𝑤 𝐹 𝑢 ) = ( 𝑤 + 𝑢 ) ) |
| 62 | 61 | oveq2d | ⊢ ( ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑢 ∈ 𝑋 ) ∧ ( 𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) ) = ( 𝑣 𝐹 ( 𝑤 + 𝑢 ) ) ) |
| 63 | 50 57 62 | 3eqtr4d | ⊢ ( ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑢 ∈ 𝑋 ) ∧ ( 𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( ( 𝑣 + 𝑤 ) 𝐹 𝑢 ) = ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) ) ) |
| 64 | 63 | ralrimivva | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑢 ∈ 𝑋 ) → ∀ 𝑣 ∈ 𝑌 ∀ 𝑤 ∈ 𝑌 ( ( 𝑣 + 𝑤 ) 𝐹 𝑢 ) = ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) ) ) |
| 65 | 3 2 | ressplusg | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → + = ( +g ‘ 𝐻 ) ) |
| 66 | 65 | oveqd | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑣 + 𝑤 ) = ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) ) |
| 67 | 66 | oveq1d | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( ( 𝑣 + 𝑤 ) 𝐹 𝑢 ) = ( ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) 𝐹 𝑢 ) ) |
| 68 | 67 | eqeq1d | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( ( ( 𝑣 + 𝑤 ) 𝐹 𝑢 ) = ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) ) ↔ ( ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) 𝐹 𝑢 ) = ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) ) ) ) |
| 69 | 19 68 | raleqbidv | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( ∀ 𝑤 ∈ 𝑌 ( ( 𝑣 + 𝑤 ) 𝐹 𝑢 ) = ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) ) ↔ ∀ 𝑤 ∈ ( Base ‘ 𝐻 ) ( ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) 𝐹 𝑢 ) = ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) ) ) ) |
| 70 | 19 69 | raleqbidv | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( ∀ 𝑣 ∈ 𝑌 ∀ 𝑤 ∈ 𝑌 ( ( 𝑣 + 𝑤 ) 𝐹 𝑢 ) = ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) ) ↔ ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ∀ 𝑤 ∈ ( Base ‘ 𝐻 ) ( ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) 𝐹 𝑢 ) = ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) ) ) ) |
| 71 | 70 | biimpa | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑣 ∈ 𝑌 ∀ 𝑤 ∈ 𝑌 ( ( 𝑣 + 𝑤 ) 𝐹 𝑢 ) = ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) ) ) → ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ∀ 𝑤 ∈ ( Base ‘ 𝐻 ) ( ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) 𝐹 𝑢 ) = ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) ) ) |
| 72 | 64 71 | syldan | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑢 ∈ 𝑋 ) → ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ∀ 𝑤 ∈ ( Base ‘ 𝐻 ) ( ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) 𝐹 𝑢 ) = ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) ) ) |
| 73 | 34 72 | jca | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( 0g ‘ 𝐻 ) 𝐹 𝑢 ) = 𝑢 ∧ ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ∀ 𝑤 ∈ ( Base ‘ 𝐻 ) ( ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) 𝐹 𝑢 ) = ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) ) ) ) |
| 74 | 73 | ralrimiva | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ∀ 𝑢 ∈ 𝑋 ( ( ( 0g ‘ 𝐻 ) 𝐹 𝑢 ) = 𝑢 ∧ ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ∀ 𝑤 ∈ ( Base ‘ 𝐻 ) ( ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) 𝐹 𝑢 ) = ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) ) ) ) |
| 75 | 22 74 | jca | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐹 : ( ( Base ‘ 𝐻 ) × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑢 ∈ 𝑋 ( ( ( 0g ‘ 𝐻 ) 𝐹 𝑢 ) = 𝑢 ∧ ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ∀ 𝑤 ∈ ( Base ‘ 𝐻 ) ( ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) 𝐹 𝑢 ) = ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) ) ) ) ) |
| 76 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 77 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 78 | eqid | ⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) | |
| 79 | 76 77 78 | isga | ⊢ ( 𝐹 ∈ ( 𝐻 GrpAct 𝑋 ) ↔ ( ( 𝐻 ∈ Grp ∧ 𝑋 ∈ V ) ∧ ( 𝐹 : ( ( Base ‘ 𝐻 ) × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑢 ∈ 𝑋 ( ( ( 0g ‘ 𝐻 ) 𝐹 𝑢 ) = 𝑢 ∧ ∀ 𝑣 ∈ ( Base ‘ 𝐻 ) ∀ 𝑤 ∈ ( Base ‘ 𝐻 ) ( ( 𝑣 ( +g ‘ 𝐻 ) 𝑤 ) 𝐹 𝑢 ) = ( 𝑣 𝐹 ( 𝑤 𝐹 𝑢 ) ) ) ) ) ) |
| 80 | 7 75 79 | sylanbrc | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝐹 ∈ ( 𝐻 GrpAct 𝑋 ) ) |