This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a group action is a group action iff it is closed under the group action operation. (Contributed by Mario Carneiro, 17-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | gass.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| Assertion | gass | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) → ( ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) ∈ ( 𝐺 GrpAct 𝑍 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gass.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | ovres | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑍 ) → ( 𝑥 ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑦 ) = ( 𝑥 ⊕ 𝑦 ) ) | |
| 3 | 2 | adantl | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) ∈ ( 𝐺 GrpAct 𝑍 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑍 ) ) → ( 𝑥 ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑦 ) = ( 𝑥 ⊕ 𝑦 ) ) |
| 4 | 1 | gaf | ⊢ ( ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) ∈ ( 𝐺 GrpAct 𝑍 ) → ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) : ( 𝑋 × 𝑍 ) ⟶ 𝑍 ) |
| 5 | 4 | adantl | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) ∈ ( 𝐺 GrpAct 𝑍 ) ) → ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) : ( 𝑋 × 𝑍 ) ⟶ 𝑍 ) |
| 6 | 5 | fovcdmda | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) ∈ ( 𝐺 GrpAct 𝑍 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑍 ) ) → ( 𝑥 ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑦 ) ∈ 𝑍 ) |
| 7 | 3 6 | eqeltrrd | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) ∈ ( 𝐺 GrpAct 𝑍 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑍 ) ) → ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) |
| 8 | 7 | ralrimivva | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) ∈ ( 𝐺 GrpAct 𝑍 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) |
| 9 | gagrp | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → 𝐺 ∈ Grp ) | |
| 10 | 9 | ad2antrr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) → 𝐺 ∈ Grp ) |
| 11 | gaset | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → 𝑌 ∈ V ) | |
| 12 | 11 | adantr | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) → 𝑌 ∈ V ) |
| 13 | simpr | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) → 𝑍 ⊆ 𝑌 ) | |
| 14 | 12 13 | ssexd | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) → 𝑍 ∈ V ) |
| 15 | 14 | adantr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) → 𝑍 ∈ V ) |
| 16 | 10 15 | jca | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) → ( 𝐺 ∈ Grp ∧ 𝑍 ∈ V ) ) |
| 17 | 1 | gaf | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ) |
| 18 | 17 | ad2antrr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) → ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ) |
| 19 | 18 | ffnd | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) → ⊕ Fn ( 𝑋 × 𝑌 ) ) |
| 20 | simplr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) → 𝑍 ⊆ 𝑌 ) | |
| 21 | xpss2 | ⊢ ( 𝑍 ⊆ 𝑌 → ( 𝑋 × 𝑍 ) ⊆ ( 𝑋 × 𝑌 ) ) | |
| 22 | 20 21 | syl | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) → ( 𝑋 × 𝑍 ) ⊆ ( 𝑋 × 𝑌 ) ) |
| 23 | fnssres | ⊢ ( ( ⊕ Fn ( 𝑋 × 𝑌 ) ∧ ( 𝑋 × 𝑍 ) ⊆ ( 𝑋 × 𝑌 ) ) → ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) Fn ( 𝑋 × 𝑍 ) ) | |
| 24 | 19 22 23 | syl2anc | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) → ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) Fn ( 𝑋 × 𝑍 ) ) |
| 25 | simpr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) | |
| 26 | 2 | eleq1d | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑍 ) → ( ( 𝑥 ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑦 ) ∈ 𝑍 ↔ ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) ) |
| 27 | 26 | ralbidva | ⊢ ( 𝑥 ∈ 𝑋 → ( ∀ 𝑦 ∈ 𝑍 ( 𝑥 ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑦 ) ∈ 𝑍 ↔ ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) ) |
| 28 | 27 | ralbiia | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑦 ) ∈ 𝑍 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) |
| 29 | 25 28 | sylibr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑦 ) ∈ 𝑍 ) |
| 30 | ffnov | ⊢ ( ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) : ( 𝑋 × 𝑍 ) ⟶ 𝑍 ↔ ( ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) Fn ( 𝑋 × 𝑍 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑦 ) ∈ 𝑍 ) ) | |
| 31 | 24 29 30 | sylanbrc | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) → ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) : ( 𝑋 × 𝑍 ) ⟶ 𝑍 ) |
| 32 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 33 | 1 32 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 34 | 10 33 | syl | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 35 | ovres | ⊢ ( ( ( 0g ‘ 𝐺 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑍 ) → ( ( 0g ‘ 𝐺 ) ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑧 ) = ( ( 0g ‘ 𝐺 ) ⊕ 𝑧 ) ) | |
| 36 | 34 35 | sylan | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑍 ) → ( ( 0g ‘ 𝐺 ) ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑧 ) = ( ( 0g ‘ 𝐺 ) ⊕ 𝑧 ) ) |
| 37 | simpll | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) → ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ) | |
| 38 | 20 | sselda | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑍 ) → 𝑧 ∈ 𝑌 ) |
| 39 | 32 | gagrpid | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑧 ∈ 𝑌 ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝑧 ) = 𝑧 ) |
| 40 | 37 38 39 | syl2an2r | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑍 ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝑧 ) = 𝑧 ) |
| 41 | 36 40 | eqtrd | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑍 ) → ( ( 0g ‘ 𝐺 ) ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑧 ) = 𝑧 ) |
| 42 | 37 | ad2antrr | ⊢ ( ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑍 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ) |
| 43 | simprl | ⊢ ( ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑍 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → 𝑢 ∈ 𝑋 ) | |
| 44 | simprr | ⊢ ( ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑍 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → 𝑣 ∈ 𝑋 ) | |
| 45 | 38 | adantr | ⊢ ( ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑍 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → 𝑧 ∈ 𝑌 ) |
| 46 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 47 | 1 46 | gaass | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ) → ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ⊕ 𝑧 ) = ( 𝑢 ⊕ ( 𝑣 ⊕ 𝑧 ) ) ) |
| 48 | 42 43 44 45 47 | syl13anc | ⊢ ( ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑍 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ⊕ 𝑧 ) = ( 𝑢 ⊕ ( 𝑣 ⊕ 𝑧 ) ) ) |
| 49 | simplr | ⊢ ( ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑍 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → 𝑧 ∈ 𝑍 ) | |
| 50 | simpllr | ⊢ ( ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑍 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) | |
| 51 | ovrspc2v | ⊢ ( ( ( 𝑣 ∈ 𝑋 ∧ 𝑧 ∈ 𝑍 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) → ( 𝑣 ⊕ 𝑧 ) ∈ 𝑍 ) | |
| 52 | 44 49 50 51 | syl21anc | ⊢ ( ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑍 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( 𝑣 ⊕ 𝑧 ) ∈ 𝑍 ) |
| 53 | ovres | ⊢ ( ( 𝑢 ∈ 𝑋 ∧ ( 𝑣 ⊕ 𝑧 ) ∈ 𝑍 ) → ( 𝑢 ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) ( 𝑣 ⊕ 𝑧 ) ) = ( 𝑢 ⊕ ( 𝑣 ⊕ 𝑧 ) ) ) | |
| 54 | 43 52 53 | syl2anc | ⊢ ( ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑍 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( 𝑢 ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) ( 𝑣 ⊕ 𝑧 ) ) = ( 𝑢 ⊕ ( 𝑣 ⊕ 𝑧 ) ) ) |
| 55 | 48 54 | eqtr4d | ⊢ ( ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑍 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ⊕ 𝑧 ) = ( 𝑢 ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) ( 𝑣 ⊕ 𝑧 ) ) ) |
| 56 | 10 | ad2antrr | ⊢ ( ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑍 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → 𝐺 ∈ Grp ) |
| 57 | 1 46 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) → ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ∈ 𝑋 ) |
| 58 | 56 43 44 57 | syl3anc | ⊢ ( ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑍 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ∈ 𝑋 ) |
| 59 | ovres | ⊢ ( ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑍 ) → ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑧 ) = ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ⊕ 𝑧 ) ) | |
| 60 | 58 49 59 | syl2anc | ⊢ ( ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑍 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑧 ) = ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ⊕ 𝑧 ) ) |
| 61 | ovres | ⊢ ( ( 𝑣 ∈ 𝑋 ∧ 𝑧 ∈ 𝑍 ) → ( 𝑣 ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑧 ) = ( 𝑣 ⊕ 𝑧 ) ) | |
| 62 | 44 49 61 | syl2anc | ⊢ ( ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑍 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( 𝑣 ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑧 ) = ( 𝑣 ⊕ 𝑧 ) ) |
| 63 | 62 | oveq2d | ⊢ ( ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑍 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( 𝑢 ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) ( 𝑣 ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑧 ) ) = ( 𝑢 ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) ( 𝑣 ⊕ 𝑧 ) ) ) |
| 64 | 55 60 63 | 3eqtr4d | ⊢ ( ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑍 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑧 ) = ( 𝑢 ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) ( 𝑣 ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑧 ) ) ) |
| 65 | 64 | ralrimivva | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑍 ) → ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑧 ) = ( 𝑢 ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) ( 𝑣 ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑧 ) ) ) |
| 66 | 41 65 | jca | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑍 ) → ( ( ( 0g ‘ 𝐺 ) ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑧 ) = 𝑧 ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑧 ) = ( 𝑢 ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) ( 𝑣 ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑧 ) ) ) ) |
| 67 | 66 | ralrimiva | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) → ∀ 𝑧 ∈ 𝑍 ( ( ( 0g ‘ 𝐺 ) ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑧 ) = 𝑧 ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑧 ) = ( 𝑢 ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) ( 𝑣 ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑧 ) ) ) ) |
| 68 | 31 67 | jca | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) → ( ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) : ( 𝑋 × 𝑍 ) ⟶ 𝑍 ∧ ∀ 𝑧 ∈ 𝑍 ( ( ( 0g ‘ 𝐺 ) ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑧 ) = 𝑧 ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑧 ) = ( 𝑢 ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) ( 𝑣 ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑧 ) ) ) ) ) |
| 69 | 1 46 32 | isga | ⊢ ( ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) ∈ ( 𝐺 GrpAct 𝑍 ) ↔ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ V ) ∧ ( ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) : ( 𝑋 × 𝑍 ) ⟶ 𝑍 ∧ ∀ 𝑧 ∈ 𝑍 ( ( ( 0g ‘ 𝐺 ) ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑧 ) = 𝑧 ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑧 ) = ( 𝑢 ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) ( 𝑣 ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) 𝑧 ) ) ) ) ) ) |
| 70 | 16 68 69 | sylanbrc | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) → ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) ∈ ( 𝐺 GrpAct 𝑍 ) ) |
| 71 | 8 70 | impbida | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑍 ⊆ 𝑌 ) → ( ( ⊕ ↾ ( 𝑋 × 𝑍 ) ) ∈ ( 𝐺 GrpAct 𝑍 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑍 ( 𝑥 ⊕ 𝑦 ) ∈ 𝑍 ) ) |