This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Normal subgroups form an algebraic closure system. (Contributed by Stefan O'Rear, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subgacs.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| Assertion | nsgacs | ⊢ ( 𝐺 ∈ Grp → ( NrmSGrp ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgacs.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | 1 | subgss | ⊢ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) → 𝑠 ⊆ 𝐵 ) |
| 3 | velpw | ⊢ ( 𝑠 ∈ 𝒫 𝐵 ↔ 𝑠 ⊆ 𝐵 ) | |
| 4 | 2 3 | sylibr | ⊢ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) → 𝑠 ∈ 𝒫 𝐵 ) |
| 5 | eleq2w | ⊢ ( 𝑧 = 𝑠 → ( ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 ↔ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝑠 ) ) | |
| 6 | 5 | raleqbi1dv | ⊢ ( 𝑧 = 𝑠 → ( ∀ 𝑦 ∈ 𝑧 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 ↔ ∀ 𝑦 ∈ 𝑠 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝑠 ) ) |
| 7 | 6 | ralbidv | ⊢ ( 𝑧 = 𝑠 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑧 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑠 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝑠 ) ) |
| 8 | 7 | elrab3 | ⊢ ( 𝑠 ∈ 𝒫 𝐵 → ( 𝑠 ∈ { 𝑧 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑧 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 } ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑠 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝑠 ) ) |
| 9 | 4 8 | syl | ⊢ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑠 ∈ { 𝑧 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑧 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 } ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑠 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝑠 ) ) |
| 10 | 9 | bicomd | ⊢ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑠 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝑠 ↔ 𝑠 ∈ { 𝑧 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑧 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 } ) ) |
| 11 | 10 | pm5.32i | ⊢ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑠 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝑠 ) ↔ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑠 ∈ { 𝑧 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑧 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 } ) ) |
| 12 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 13 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 14 | 1 12 13 | isnsg3 | ⊢ ( 𝑠 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑠 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝑠 ) ) |
| 15 | elin | ⊢ ( 𝑠 ∈ ( ( SubGrp ‘ 𝐺 ) ∩ { 𝑧 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑧 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 } ) ↔ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑠 ∈ { 𝑧 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑧 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 } ) ) | |
| 16 | 11 14 15 | 3bitr4i | ⊢ ( 𝑠 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ 𝑠 ∈ ( ( SubGrp ‘ 𝐺 ) ∩ { 𝑧 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑧 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 } ) ) |
| 17 | 16 | eqriv | ⊢ ( NrmSGrp ‘ 𝐺 ) = ( ( SubGrp ‘ 𝐺 ) ∩ { 𝑧 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑧 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 } ) |
| 18 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 19 | mreacs | ⊢ ( 𝐵 ∈ V → ( ACS ‘ 𝐵 ) ∈ ( Moore ‘ 𝒫 𝐵 ) ) | |
| 20 | 18 19 | mp1i | ⊢ ( 𝐺 ∈ Grp → ( ACS ‘ 𝐵 ) ∈ ( Moore ‘ 𝒫 𝐵 ) ) |
| 21 | 1 | subgacs | ⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) ) |
| 22 | simpl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) | |
| 23 | 1 12 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
| 24 | 23 | 3expb | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
| 25 | simprl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) | |
| 26 | 1 13 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝐵 ) |
| 27 | 22 24 25 26 | syl3anc | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝐵 ) |
| 28 | 27 | ralrimivva | ⊢ ( 𝐺 ∈ Grp → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝐵 ) |
| 29 | acsfn1c | ⊢ ( ( 𝐵 ∈ V ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝐵 ) → { 𝑧 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑧 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 } ∈ ( ACS ‘ 𝐵 ) ) | |
| 30 | 18 28 29 | sylancr | ⊢ ( 𝐺 ∈ Grp → { 𝑧 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑧 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 } ∈ ( ACS ‘ 𝐵 ) ) |
| 31 | mreincl | ⊢ ( ( ( ACS ‘ 𝐵 ) ∈ ( Moore ‘ 𝒫 𝐵 ) ∧ ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) ∧ { 𝑧 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑧 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 } ∈ ( ACS ‘ 𝐵 ) ) → ( ( SubGrp ‘ 𝐺 ) ∩ { 𝑧 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑧 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 } ) ∈ ( ACS ‘ 𝐵 ) ) | |
| 32 | 20 21 30 31 | syl3anc | ⊢ ( 𝐺 ∈ Grp → ( ( SubGrp ‘ 𝐺 ) ∩ { 𝑧 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑧 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 } ) ∈ ( ACS ‘ 𝐵 ) ) |
| 33 | 17 32 | eqeltrid | ⊢ ( 𝐺 ∈ Grp → ( NrmSGrp ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) ) |