This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of indexed edges of an extensible structure with a base set and another slot not being the slot for edge functions is empty. (Contributed by AV, 23-Sep-2020) (Proof shortened by AV, 12-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | structvtxvallem.s | ⊢ 𝑆 ∈ ℕ | |
| structvtxvallem.b | ⊢ ( Base ‘ ndx ) < 𝑆 | ||
| structvtxvallem.g | ⊢ 𝐺 = { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 𝑆 , 𝐸 〉 } | ||
| Assertion | structiedg0val | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ ( .ef ‘ ndx ) ) → ( iEdg ‘ 𝐺 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | structvtxvallem.s | ⊢ 𝑆 ∈ ℕ | |
| 2 | structvtxvallem.b | ⊢ ( Base ‘ ndx ) < 𝑆 | |
| 3 | structvtxvallem.g | ⊢ 𝐺 = { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 𝑆 , 𝐸 〉 } | |
| 4 | 3 2 1 | 2strstr | ⊢ 𝐺 Struct 〈 ( Base ‘ ndx ) , 𝑆 〉 |
| 5 | structn0fun | ⊢ ( 𝐺 Struct 〈 ( Base ‘ ndx ) , 𝑆 〉 → Fun ( 𝐺 ∖ { ∅ } ) ) | |
| 6 | 1 2 3 | structvtxvallem | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 2 ≤ ( ♯ ‘ dom 𝐺 ) ) |
| 7 | funiedgdmge2val | ⊢ ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 2 ≤ ( ♯ ‘ dom 𝐺 ) ) → ( iEdg ‘ 𝐺 ) = ( .ef ‘ 𝐺 ) ) | |
| 8 | 5 6 7 | syl2an | ⊢ ( ( 𝐺 Struct 〈 ( Base ‘ ndx ) , 𝑆 〉 ∧ ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ) → ( iEdg ‘ 𝐺 ) = ( .ef ‘ 𝐺 ) ) |
| 9 | 4 8 | mpan | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( iEdg ‘ 𝐺 ) = ( .ef ‘ 𝐺 ) ) |
| 10 | 9 | 3adant3 | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ ( .ef ‘ ndx ) ) → ( iEdg ‘ 𝐺 ) = ( .ef ‘ 𝐺 ) ) |
| 11 | prex | ⊢ { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 𝑆 , 𝐸 〉 } ∈ V | |
| 12 | 11 | a1i | ⊢ ( 𝐺 = { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 𝑆 , 𝐸 〉 } → { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 𝑆 , 𝐸 〉 } ∈ V ) |
| 13 | 3 12 | eqeltrid | ⊢ ( 𝐺 = { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 𝑆 , 𝐸 〉 } → 𝐺 ∈ V ) |
| 14 | edgfndxid | ⊢ ( 𝐺 ∈ V → ( .ef ‘ 𝐺 ) = ( 𝐺 ‘ ( .ef ‘ ndx ) ) ) | |
| 15 | 3 13 14 | mp2b | ⊢ ( .ef ‘ 𝐺 ) = ( 𝐺 ‘ ( .ef ‘ ndx ) ) |
| 16 | basendxnedgfndx | ⊢ ( Base ‘ ndx ) ≠ ( .ef ‘ ndx ) | |
| 17 | 16 | nesymi | ⊢ ¬ ( .ef ‘ ndx ) = ( Base ‘ ndx ) |
| 18 | 17 | a1i | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ ( .ef ‘ ndx ) ) → ¬ ( .ef ‘ ndx ) = ( Base ‘ ndx ) ) |
| 19 | neneq | ⊢ ( 𝑆 ≠ ( .ef ‘ ndx ) → ¬ 𝑆 = ( .ef ‘ ndx ) ) | |
| 20 | eqcom | ⊢ ( ( .ef ‘ ndx ) = 𝑆 ↔ 𝑆 = ( .ef ‘ ndx ) ) | |
| 21 | 19 20 | sylnibr | ⊢ ( 𝑆 ≠ ( .ef ‘ ndx ) → ¬ ( .ef ‘ ndx ) = 𝑆 ) |
| 22 | 21 | 3ad2ant3 | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ ( .ef ‘ ndx ) ) → ¬ ( .ef ‘ ndx ) = 𝑆 ) |
| 23 | ioran | ⊢ ( ¬ ( ( .ef ‘ ndx ) = ( Base ‘ ndx ) ∨ ( .ef ‘ ndx ) = 𝑆 ) ↔ ( ¬ ( .ef ‘ ndx ) = ( Base ‘ ndx ) ∧ ¬ ( .ef ‘ ndx ) = 𝑆 ) ) | |
| 24 | 18 22 23 | sylanbrc | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ ( .ef ‘ ndx ) ) → ¬ ( ( .ef ‘ ndx ) = ( Base ‘ ndx ) ∨ ( .ef ‘ ndx ) = 𝑆 ) ) |
| 25 | fvex | ⊢ ( .ef ‘ ndx ) ∈ V | |
| 26 | 25 | elpr | ⊢ ( ( .ef ‘ ndx ) ∈ { ( Base ‘ ndx ) , 𝑆 } ↔ ( ( .ef ‘ ndx ) = ( Base ‘ ndx ) ∨ ( .ef ‘ ndx ) = 𝑆 ) ) |
| 27 | 24 26 | sylnibr | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ ( .ef ‘ ndx ) ) → ¬ ( .ef ‘ ndx ) ∈ { ( Base ‘ ndx ) , 𝑆 } ) |
| 28 | 3 | dmeqi | ⊢ dom 𝐺 = dom { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 𝑆 , 𝐸 〉 } |
| 29 | dmpropg | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → dom { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 𝑆 , 𝐸 〉 } = { ( Base ‘ ndx ) , 𝑆 } ) | |
| 30 | 29 | 3adant3 | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ ( .ef ‘ ndx ) ) → dom { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 𝑆 , 𝐸 〉 } = { ( Base ‘ ndx ) , 𝑆 } ) |
| 31 | 28 30 | eqtrid | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ ( .ef ‘ ndx ) ) → dom 𝐺 = { ( Base ‘ ndx ) , 𝑆 } ) |
| 32 | 27 31 | neleqtrrd | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ ( .ef ‘ ndx ) ) → ¬ ( .ef ‘ ndx ) ∈ dom 𝐺 ) |
| 33 | ndmfv | ⊢ ( ¬ ( .ef ‘ ndx ) ∈ dom 𝐺 → ( 𝐺 ‘ ( .ef ‘ ndx ) ) = ∅ ) | |
| 34 | 32 33 | syl | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ ( .ef ‘ ndx ) ) → ( 𝐺 ‘ ( .ef ‘ ndx ) ) = ∅ ) |
| 35 | 15 34 | eqtrid | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ ( .ef ‘ ndx ) ) → ( .ef ‘ 𝐺 ) = ∅ ) |
| 36 | 10 35 | eqtrd | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ ( .ef ‘ ndx ) ) → ( iEdg ‘ 𝐺 ) = ∅ ) |