This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of indexed edges of an extensible structure with a base set and another slot not being the slot for edge functions is empty. (Contributed by AV, 23-Sep-2020) (Proof shortened by AV, 12-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | structvtxvallem.s | |- S e. NN |
|
| structvtxvallem.b | |- ( Base ` ndx ) < S |
||
| structvtxvallem.g | |- G = { <. ( Base ` ndx ) , V >. , <. S , E >. } |
||
| Assertion | structiedg0val | |- ( ( V e. X /\ E e. Y /\ S =/= ( .ef ` ndx ) ) -> ( iEdg ` G ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | structvtxvallem.s | |- S e. NN |
|
| 2 | structvtxvallem.b | |- ( Base ` ndx ) < S |
|
| 3 | structvtxvallem.g | |- G = { <. ( Base ` ndx ) , V >. , <. S , E >. } |
|
| 4 | 3 2 1 | 2strstr | |- G Struct <. ( Base ` ndx ) , S >. |
| 5 | structn0fun | |- ( G Struct <. ( Base ` ndx ) , S >. -> Fun ( G \ { (/) } ) ) |
|
| 6 | 1 2 3 | structvtxvallem | |- ( ( V e. X /\ E e. Y ) -> 2 <_ ( # ` dom G ) ) |
| 7 | funiedgdmge2val | |- ( ( Fun ( G \ { (/) } ) /\ 2 <_ ( # ` dom G ) ) -> ( iEdg ` G ) = ( .ef ` G ) ) |
|
| 8 | 5 6 7 | syl2an | |- ( ( G Struct <. ( Base ` ndx ) , S >. /\ ( V e. X /\ E e. Y ) ) -> ( iEdg ` G ) = ( .ef ` G ) ) |
| 9 | 4 8 | mpan | |- ( ( V e. X /\ E e. Y ) -> ( iEdg ` G ) = ( .ef ` G ) ) |
| 10 | 9 | 3adant3 | |- ( ( V e. X /\ E e. Y /\ S =/= ( .ef ` ndx ) ) -> ( iEdg ` G ) = ( .ef ` G ) ) |
| 11 | prex | |- { <. ( Base ` ndx ) , V >. , <. S , E >. } e. _V |
|
| 12 | 11 | a1i | |- ( G = { <. ( Base ` ndx ) , V >. , <. S , E >. } -> { <. ( Base ` ndx ) , V >. , <. S , E >. } e. _V ) |
| 13 | 3 12 | eqeltrid | |- ( G = { <. ( Base ` ndx ) , V >. , <. S , E >. } -> G e. _V ) |
| 14 | edgfndxid | |- ( G e. _V -> ( .ef ` G ) = ( G ` ( .ef ` ndx ) ) ) |
|
| 15 | 3 13 14 | mp2b | |- ( .ef ` G ) = ( G ` ( .ef ` ndx ) ) |
| 16 | basendxnedgfndx | |- ( Base ` ndx ) =/= ( .ef ` ndx ) |
|
| 17 | 16 | nesymi | |- -. ( .ef ` ndx ) = ( Base ` ndx ) |
| 18 | 17 | a1i | |- ( ( V e. X /\ E e. Y /\ S =/= ( .ef ` ndx ) ) -> -. ( .ef ` ndx ) = ( Base ` ndx ) ) |
| 19 | neneq | |- ( S =/= ( .ef ` ndx ) -> -. S = ( .ef ` ndx ) ) |
|
| 20 | eqcom | |- ( ( .ef ` ndx ) = S <-> S = ( .ef ` ndx ) ) |
|
| 21 | 19 20 | sylnibr | |- ( S =/= ( .ef ` ndx ) -> -. ( .ef ` ndx ) = S ) |
| 22 | 21 | 3ad2ant3 | |- ( ( V e. X /\ E e. Y /\ S =/= ( .ef ` ndx ) ) -> -. ( .ef ` ndx ) = S ) |
| 23 | ioran | |- ( -. ( ( .ef ` ndx ) = ( Base ` ndx ) \/ ( .ef ` ndx ) = S ) <-> ( -. ( .ef ` ndx ) = ( Base ` ndx ) /\ -. ( .ef ` ndx ) = S ) ) |
|
| 24 | 18 22 23 | sylanbrc | |- ( ( V e. X /\ E e. Y /\ S =/= ( .ef ` ndx ) ) -> -. ( ( .ef ` ndx ) = ( Base ` ndx ) \/ ( .ef ` ndx ) = S ) ) |
| 25 | fvex | |- ( .ef ` ndx ) e. _V |
|
| 26 | 25 | elpr | |- ( ( .ef ` ndx ) e. { ( Base ` ndx ) , S } <-> ( ( .ef ` ndx ) = ( Base ` ndx ) \/ ( .ef ` ndx ) = S ) ) |
| 27 | 24 26 | sylnibr | |- ( ( V e. X /\ E e. Y /\ S =/= ( .ef ` ndx ) ) -> -. ( .ef ` ndx ) e. { ( Base ` ndx ) , S } ) |
| 28 | 3 | dmeqi | |- dom G = dom { <. ( Base ` ndx ) , V >. , <. S , E >. } |
| 29 | dmpropg | |- ( ( V e. X /\ E e. Y ) -> dom { <. ( Base ` ndx ) , V >. , <. S , E >. } = { ( Base ` ndx ) , S } ) |
|
| 30 | 29 | 3adant3 | |- ( ( V e. X /\ E e. Y /\ S =/= ( .ef ` ndx ) ) -> dom { <. ( Base ` ndx ) , V >. , <. S , E >. } = { ( Base ` ndx ) , S } ) |
| 31 | 28 30 | eqtrid | |- ( ( V e. X /\ E e. Y /\ S =/= ( .ef ` ndx ) ) -> dom G = { ( Base ` ndx ) , S } ) |
| 32 | 27 31 | neleqtrrd | |- ( ( V e. X /\ E e. Y /\ S =/= ( .ef ` ndx ) ) -> -. ( .ef ` ndx ) e. dom G ) |
| 33 | ndmfv | |- ( -. ( .ef ` ndx ) e. dom G -> ( G ` ( .ef ` ndx ) ) = (/) ) |
|
| 34 | 32 33 | syl | |- ( ( V e. X /\ E e. Y /\ S =/= ( .ef ` ndx ) ) -> ( G ` ( .ef ` ndx ) ) = (/) ) |
| 35 | 15 34 | eqtrid | |- ( ( V e. X /\ E e. Y /\ S =/= ( .ef ` ndx ) ) -> ( .ef ` G ) = (/) ) |
| 36 | 10 35 | eqtrd | |- ( ( V e. X /\ E e. Y /\ S =/= ( .ef ` ndx ) ) -> ( iEdg ` G ) = (/) ) |