This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for structgrssvtx and structgrssiedg . (Contributed by AV, 14-Oct-2020) (Proof shortened by AV, 12-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | structgrssvtx.g | ⊢ ( 𝜑 → 𝐺 Struct 𝑋 ) | |
| structgrssvtx.v | ⊢ ( 𝜑 → 𝑉 ∈ 𝑌 ) | ||
| structgrssvtx.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑍 ) | ||
| structgrssvtx.s | ⊢ ( 𝜑 → { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 ( .ef ‘ ndx ) , 𝐸 〉 } ⊆ 𝐺 ) | ||
| Assertion | structgrssvtxlem | ⊢ ( 𝜑 → 2 ≤ ( ♯ ‘ dom 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | structgrssvtx.g | ⊢ ( 𝜑 → 𝐺 Struct 𝑋 ) | |
| 2 | structgrssvtx.v | ⊢ ( 𝜑 → 𝑉 ∈ 𝑌 ) | |
| 3 | structgrssvtx.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑍 ) | |
| 4 | structgrssvtx.s | ⊢ ( 𝜑 → { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 ( .ef ‘ ndx ) , 𝐸 〉 } ⊆ 𝐺 ) | |
| 5 | fvexd | ⊢ ( 𝜑 → ( Base ‘ ndx ) ∈ V ) | |
| 6 | fvexd | ⊢ ( 𝜑 → ( .ef ‘ ndx ) ∈ V ) | |
| 7 | structex | ⊢ ( 𝐺 Struct 𝑋 → 𝐺 ∈ V ) | |
| 8 | 1 7 | syl | ⊢ ( 𝜑 → 𝐺 ∈ V ) |
| 9 | basendxnedgfndx | ⊢ ( Base ‘ ndx ) ≠ ( .ef ‘ ndx ) | |
| 10 | 9 | a1i | ⊢ ( 𝜑 → ( Base ‘ ndx ) ≠ ( .ef ‘ ndx ) ) |
| 11 | 5 6 2 3 8 10 4 | hashdmpropge2 | ⊢ ( 𝜑 → 2 ≤ ( ♯ ‘ dom 𝐺 ) ) |