This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for structvtxval and structiedg0val . (Contributed by AV, 23-Sep-2020) (Revised by AV, 12-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | structvtxvallem.s | ⊢ 𝑆 ∈ ℕ | |
| structvtxvallem.b | ⊢ ( Base ‘ ndx ) < 𝑆 | ||
| structvtxvallem.g | ⊢ 𝐺 = { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 𝑆 , 𝐸 〉 } | ||
| Assertion | structvtxvallem | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 2 ≤ ( ♯ ‘ dom 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | structvtxvallem.s | ⊢ 𝑆 ∈ ℕ | |
| 2 | structvtxvallem.b | ⊢ ( Base ‘ ndx ) < 𝑆 | |
| 3 | structvtxvallem.g | ⊢ 𝐺 = { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 𝑆 , 𝐸 〉 } | |
| 4 | fvexd | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( Base ‘ ndx ) ∈ V ) | |
| 5 | 1 | a1i | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 𝑆 ∈ ℕ ) |
| 6 | simpl | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 𝑉 ∈ 𝑋 ) | |
| 7 | simpr | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 𝐸 ∈ 𝑌 ) | |
| 8 | prex | ⊢ { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 𝑆 , 𝐸 〉 } ∈ V | |
| 9 | 3 8 | eqeltri | ⊢ 𝐺 ∈ V |
| 10 | 9 | a1i | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 𝐺 ∈ V ) |
| 11 | basendxnn | ⊢ ( Base ‘ ndx ) ∈ ℕ | |
| 12 | 11 | nnrei | ⊢ ( Base ‘ ndx ) ∈ ℝ |
| 13 | 12 2 | ltneii | ⊢ ( Base ‘ ndx ) ≠ 𝑆 |
| 14 | 13 | a1i | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( Base ‘ ndx ) ≠ 𝑆 ) |
| 15 | 3 | eqimss2i | ⊢ { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 𝑆 , 𝐸 〉 } ⊆ 𝐺 |
| 16 | 15 | a1i | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 𝑆 , 𝐸 〉 } ⊆ 𝐺 ) |
| 17 | 4 5 6 7 10 14 16 | hashdmpropge2 | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 2 ≤ ( ♯ ‘ dom 𝐺 ) ) |