This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | strleun.f | ⊢ 𝐹 Struct 〈 𝐴 , 𝐵 〉 | |
| strleun.g | ⊢ 𝐺 Struct 〈 𝐶 , 𝐷 〉 | ||
| strleun.l | ⊢ 𝐵 < 𝐶 | ||
| Assertion | strleun | ⊢ ( 𝐹 ∪ 𝐺 ) Struct 〈 𝐴 , 𝐷 〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strleun.f | ⊢ 𝐹 Struct 〈 𝐴 , 𝐵 〉 | |
| 2 | strleun.g | ⊢ 𝐺 Struct 〈 𝐶 , 𝐷 〉 | |
| 3 | strleun.l | ⊢ 𝐵 < 𝐶 | |
| 4 | isstruct | ⊢ ( 𝐹 Struct 〈 𝐴 , 𝐵 〉 ↔ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵 ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( 𝐴 ... 𝐵 ) ) ) | |
| 5 | 1 4 | mpbi | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵 ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( 𝐴 ... 𝐵 ) ) |
| 6 | 5 | simp1i | ⊢ ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵 ) |
| 7 | 6 | simp1i | ⊢ 𝐴 ∈ ℕ |
| 8 | isstruct | ⊢ ( 𝐺 Struct 〈 𝐶 , 𝐷 〉 ↔ ( ( 𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶 ≤ 𝐷 ) ∧ Fun ( 𝐺 ∖ { ∅ } ) ∧ dom 𝐺 ⊆ ( 𝐶 ... 𝐷 ) ) ) | |
| 9 | 2 8 | mpbi | ⊢ ( ( 𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶 ≤ 𝐷 ) ∧ Fun ( 𝐺 ∖ { ∅ } ) ∧ dom 𝐺 ⊆ ( 𝐶 ... 𝐷 ) ) |
| 10 | 9 | simp1i | ⊢ ( 𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶 ≤ 𝐷 ) |
| 11 | 10 | simp2i | ⊢ 𝐷 ∈ ℕ |
| 12 | 6 | simp3i | ⊢ 𝐴 ≤ 𝐵 |
| 13 | 6 | simp2i | ⊢ 𝐵 ∈ ℕ |
| 14 | 13 | nnrei | ⊢ 𝐵 ∈ ℝ |
| 15 | 10 | simp1i | ⊢ 𝐶 ∈ ℕ |
| 16 | 15 | nnrei | ⊢ 𝐶 ∈ ℝ |
| 17 | 14 16 3 | ltleii | ⊢ 𝐵 ≤ 𝐶 |
| 18 | 7 | nnrei | ⊢ 𝐴 ∈ ℝ |
| 19 | 18 14 16 | letri | ⊢ ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) → 𝐴 ≤ 𝐶 ) |
| 20 | 12 17 19 | mp2an | ⊢ 𝐴 ≤ 𝐶 |
| 21 | 10 | simp3i | ⊢ 𝐶 ≤ 𝐷 |
| 22 | 11 | nnrei | ⊢ 𝐷 ∈ ℝ |
| 23 | 18 16 22 | letri | ⊢ ( ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐷 ) → 𝐴 ≤ 𝐷 ) |
| 24 | 20 21 23 | mp2an | ⊢ 𝐴 ≤ 𝐷 |
| 25 | 7 11 24 | 3pm3.2i | ⊢ ( 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐴 ≤ 𝐷 ) |
| 26 | 5 | simp2i | ⊢ Fun ( 𝐹 ∖ { ∅ } ) |
| 27 | 9 | simp2i | ⊢ Fun ( 𝐺 ∖ { ∅ } ) |
| 28 | 26 27 | pm3.2i | ⊢ ( Fun ( 𝐹 ∖ { ∅ } ) ∧ Fun ( 𝐺 ∖ { ∅ } ) ) |
| 29 | difss | ⊢ ( 𝐹 ∖ { ∅ } ) ⊆ 𝐹 | |
| 30 | dmss | ⊢ ( ( 𝐹 ∖ { ∅ } ) ⊆ 𝐹 → dom ( 𝐹 ∖ { ∅ } ) ⊆ dom 𝐹 ) | |
| 31 | 29 30 | ax-mp | ⊢ dom ( 𝐹 ∖ { ∅ } ) ⊆ dom 𝐹 |
| 32 | 5 | simp3i | ⊢ dom 𝐹 ⊆ ( 𝐴 ... 𝐵 ) |
| 33 | 31 32 | sstri | ⊢ dom ( 𝐹 ∖ { ∅ } ) ⊆ ( 𝐴 ... 𝐵 ) |
| 34 | difss | ⊢ ( 𝐺 ∖ { ∅ } ) ⊆ 𝐺 | |
| 35 | dmss | ⊢ ( ( 𝐺 ∖ { ∅ } ) ⊆ 𝐺 → dom ( 𝐺 ∖ { ∅ } ) ⊆ dom 𝐺 ) | |
| 36 | 34 35 | ax-mp | ⊢ dom ( 𝐺 ∖ { ∅ } ) ⊆ dom 𝐺 |
| 37 | 9 | simp3i | ⊢ dom 𝐺 ⊆ ( 𝐶 ... 𝐷 ) |
| 38 | 36 37 | sstri | ⊢ dom ( 𝐺 ∖ { ∅ } ) ⊆ ( 𝐶 ... 𝐷 ) |
| 39 | ss2in | ⊢ ( ( dom ( 𝐹 ∖ { ∅ } ) ⊆ ( 𝐴 ... 𝐵 ) ∧ dom ( 𝐺 ∖ { ∅ } ) ⊆ ( 𝐶 ... 𝐷 ) ) → ( dom ( 𝐹 ∖ { ∅ } ) ∩ dom ( 𝐺 ∖ { ∅ } ) ) ⊆ ( ( 𝐴 ... 𝐵 ) ∩ ( 𝐶 ... 𝐷 ) ) ) | |
| 40 | 33 38 39 | mp2an | ⊢ ( dom ( 𝐹 ∖ { ∅ } ) ∩ dom ( 𝐺 ∖ { ∅ } ) ) ⊆ ( ( 𝐴 ... 𝐵 ) ∩ ( 𝐶 ... 𝐷 ) ) |
| 41 | fzdisj | ⊢ ( 𝐵 < 𝐶 → ( ( 𝐴 ... 𝐵 ) ∩ ( 𝐶 ... 𝐷 ) ) = ∅ ) | |
| 42 | 3 41 | ax-mp | ⊢ ( ( 𝐴 ... 𝐵 ) ∩ ( 𝐶 ... 𝐷 ) ) = ∅ |
| 43 | sseq0 | ⊢ ( ( ( dom ( 𝐹 ∖ { ∅ } ) ∩ dom ( 𝐺 ∖ { ∅ } ) ) ⊆ ( ( 𝐴 ... 𝐵 ) ∩ ( 𝐶 ... 𝐷 ) ) ∧ ( ( 𝐴 ... 𝐵 ) ∩ ( 𝐶 ... 𝐷 ) ) = ∅ ) → ( dom ( 𝐹 ∖ { ∅ } ) ∩ dom ( 𝐺 ∖ { ∅ } ) ) = ∅ ) | |
| 44 | 40 42 43 | mp2an | ⊢ ( dom ( 𝐹 ∖ { ∅ } ) ∩ dom ( 𝐺 ∖ { ∅ } ) ) = ∅ |
| 45 | funun | ⊢ ( ( ( Fun ( 𝐹 ∖ { ∅ } ) ∧ Fun ( 𝐺 ∖ { ∅ } ) ) ∧ ( dom ( 𝐹 ∖ { ∅ } ) ∩ dom ( 𝐺 ∖ { ∅ } ) ) = ∅ ) → Fun ( ( 𝐹 ∖ { ∅ } ) ∪ ( 𝐺 ∖ { ∅ } ) ) ) | |
| 46 | 28 44 45 | mp2an | ⊢ Fun ( ( 𝐹 ∖ { ∅ } ) ∪ ( 𝐺 ∖ { ∅ } ) ) |
| 47 | difundir | ⊢ ( ( 𝐹 ∪ 𝐺 ) ∖ { ∅ } ) = ( ( 𝐹 ∖ { ∅ } ) ∪ ( 𝐺 ∖ { ∅ } ) ) | |
| 48 | 47 | funeqi | ⊢ ( Fun ( ( 𝐹 ∪ 𝐺 ) ∖ { ∅ } ) ↔ Fun ( ( 𝐹 ∖ { ∅ } ) ∪ ( 𝐺 ∖ { ∅ } ) ) ) |
| 49 | 46 48 | mpbir | ⊢ Fun ( ( 𝐹 ∪ 𝐺 ) ∖ { ∅ } ) |
| 50 | dmun | ⊢ dom ( 𝐹 ∪ 𝐺 ) = ( dom 𝐹 ∪ dom 𝐺 ) | |
| 51 | 13 | nnzi | ⊢ 𝐵 ∈ ℤ |
| 52 | 11 | nnzi | ⊢ 𝐷 ∈ ℤ |
| 53 | 14 16 22 | letri | ⊢ ( ( 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐷 ) → 𝐵 ≤ 𝐷 ) |
| 54 | 17 21 53 | mp2an | ⊢ 𝐵 ≤ 𝐷 |
| 55 | eluz2 | ⊢ ( 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ↔ ( 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐵 ≤ 𝐷 ) ) | |
| 56 | 51 52 54 55 | mpbir3an | ⊢ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) |
| 57 | fzss2 | ⊢ ( 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) → ( 𝐴 ... 𝐵 ) ⊆ ( 𝐴 ... 𝐷 ) ) | |
| 58 | 56 57 | ax-mp | ⊢ ( 𝐴 ... 𝐵 ) ⊆ ( 𝐴 ... 𝐷 ) |
| 59 | 32 58 | sstri | ⊢ dom 𝐹 ⊆ ( 𝐴 ... 𝐷 ) |
| 60 | 7 | nnzi | ⊢ 𝐴 ∈ ℤ |
| 61 | 15 | nnzi | ⊢ 𝐶 ∈ ℤ |
| 62 | eluz2 | ⊢ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ↔ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶 ) ) | |
| 63 | 60 61 20 62 | mpbir3an | ⊢ 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) |
| 64 | fzss1 | ⊢ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐶 ... 𝐷 ) ⊆ ( 𝐴 ... 𝐷 ) ) | |
| 65 | 63 64 | ax-mp | ⊢ ( 𝐶 ... 𝐷 ) ⊆ ( 𝐴 ... 𝐷 ) |
| 66 | 37 65 | sstri | ⊢ dom 𝐺 ⊆ ( 𝐴 ... 𝐷 ) |
| 67 | 59 66 | unssi | ⊢ ( dom 𝐹 ∪ dom 𝐺 ) ⊆ ( 𝐴 ... 𝐷 ) |
| 68 | 50 67 | eqsstri | ⊢ dom ( 𝐹 ∪ 𝐺 ) ⊆ ( 𝐴 ... 𝐷 ) |
| 69 | isstruct | ⊢ ( ( 𝐹 ∪ 𝐺 ) Struct 〈 𝐴 , 𝐷 〉 ↔ ( ( 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐴 ≤ 𝐷 ) ∧ Fun ( ( 𝐹 ∪ 𝐺 ) ∖ { ∅ } ) ∧ dom ( 𝐹 ∪ 𝐺 ) ⊆ ( 𝐴 ... 𝐷 ) ) ) | |
| 70 | 25 49 68 69 | mpbir3an | ⊢ ( 𝐹 ∪ 𝐺 ) Struct 〈 𝐴 , 𝐷 〉 |