This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a structure with components in M ... N . (Contributed by Mario Carneiro, 29-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isstruct | ⊢ ( 𝐹 Struct 〈 𝑀 , 𝑁 〉 ↔ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( 𝑀 ... 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isstruct2 | ⊢ ( 𝐹 Struct 〈 𝑀 , 𝑁 〉 ↔ ( 〈 𝑀 , 𝑁 〉 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 〈 𝑀 , 𝑁 〉 ) ) ) | |
| 2 | df-3an | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ↔ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑀 ≤ 𝑁 ) ) | |
| 3 | brinxp2 | ⊢ ( 𝑀 ( ≤ ∩ ( ℕ × ℕ ) ) 𝑁 ↔ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑀 ≤ 𝑁 ) ) | |
| 4 | df-br | ⊢ ( 𝑀 ( ≤ ∩ ( ℕ × ℕ ) ) 𝑁 ↔ 〈 𝑀 , 𝑁 〉 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ) | |
| 5 | 2 3 4 | 3bitr2i | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ↔ 〈 𝑀 , 𝑁 〉 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ) |
| 6 | biid | ⊢ ( Fun ( 𝐹 ∖ { ∅ } ) ↔ Fun ( 𝐹 ∖ { ∅ } ) ) | |
| 7 | df-ov | ⊢ ( 𝑀 ... 𝑁 ) = ( ... ‘ 〈 𝑀 , 𝑁 〉 ) | |
| 8 | 7 | sseq2i | ⊢ ( dom 𝐹 ⊆ ( 𝑀 ... 𝑁 ) ↔ dom 𝐹 ⊆ ( ... ‘ 〈 𝑀 , 𝑁 〉 ) ) |
| 9 | 5 6 8 | 3anbi123i | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( 𝑀 ... 𝑁 ) ) ↔ ( 〈 𝑀 , 𝑁 〉 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 〈 𝑀 , 𝑁 〉 ) ) ) |
| 10 | 1 9 | bitr4i | ⊢ ( 𝐹 Struct 〈 𝑀 , 𝑁 〉 ↔ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( 𝑀 ... 𝑁 ) ) ) |