This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | strleun.f | |- F Struct <. A , B >. |
|
| strleun.g | |- G Struct <. C , D >. |
||
| strleun.l | |- B < C |
||
| Assertion | strleun | |- ( F u. G ) Struct <. A , D >. |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strleun.f | |- F Struct <. A , B >. |
|
| 2 | strleun.g | |- G Struct <. C , D >. |
|
| 3 | strleun.l | |- B < C |
|
| 4 | isstruct | |- ( F Struct <. A , B >. <-> ( ( A e. NN /\ B e. NN /\ A <_ B ) /\ Fun ( F \ { (/) } ) /\ dom F C_ ( A ... B ) ) ) |
|
| 5 | 1 4 | mpbi | |- ( ( A e. NN /\ B e. NN /\ A <_ B ) /\ Fun ( F \ { (/) } ) /\ dom F C_ ( A ... B ) ) |
| 6 | 5 | simp1i | |- ( A e. NN /\ B e. NN /\ A <_ B ) |
| 7 | 6 | simp1i | |- A e. NN |
| 8 | isstruct | |- ( G Struct <. C , D >. <-> ( ( C e. NN /\ D e. NN /\ C <_ D ) /\ Fun ( G \ { (/) } ) /\ dom G C_ ( C ... D ) ) ) |
|
| 9 | 2 8 | mpbi | |- ( ( C e. NN /\ D e. NN /\ C <_ D ) /\ Fun ( G \ { (/) } ) /\ dom G C_ ( C ... D ) ) |
| 10 | 9 | simp1i | |- ( C e. NN /\ D e. NN /\ C <_ D ) |
| 11 | 10 | simp2i | |- D e. NN |
| 12 | 6 | simp3i | |- A <_ B |
| 13 | 6 | simp2i | |- B e. NN |
| 14 | 13 | nnrei | |- B e. RR |
| 15 | 10 | simp1i | |- C e. NN |
| 16 | 15 | nnrei | |- C e. RR |
| 17 | 14 16 3 | ltleii | |- B <_ C |
| 18 | 7 | nnrei | |- A e. RR |
| 19 | 18 14 16 | letri | |- ( ( A <_ B /\ B <_ C ) -> A <_ C ) |
| 20 | 12 17 19 | mp2an | |- A <_ C |
| 21 | 10 | simp3i | |- C <_ D |
| 22 | 11 | nnrei | |- D e. RR |
| 23 | 18 16 22 | letri | |- ( ( A <_ C /\ C <_ D ) -> A <_ D ) |
| 24 | 20 21 23 | mp2an | |- A <_ D |
| 25 | 7 11 24 | 3pm3.2i | |- ( A e. NN /\ D e. NN /\ A <_ D ) |
| 26 | 5 | simp2i | |- Fun ( F \ { (/) } ) |
| 27 | 9 | simp2i | |- Fun ( G \ { (/) } ) |
| 28 | 26 27 | pm3.2i | |- ( Fun ( F \ { (/) } ) /\ Fun ( G \ { (/) } ) ) |
| 29 | difss | |- ( F \ { (/) } ) C_ F |
|
| 30 | dmss | |- ( ( F \ { (/) } ) C_ F -> dom ( F \ { (/) } ) C_ dom F ) |
|
| 31 | 29 30 | ax-mp | |- dom ( F \ { (/) } ) C_ dom F |
| 32 | 5 | simp3i | |- dom F C_ ( A ... B ) |
| 33 | 31 32 | sstri | |- dom ( F \ { (/) } ) C_ ( A ... B ) |
| 34 | difss | |- ( G \ { (/) } ) C_ G |
|
| 35 | dmss | |- ( ( G \ { (/) } ) C_ G -> dom ( G \ { (/) } ) C_ dom G ) |
|
| 36 | 34 35 | ax-mp | |- dom ( G \ { (/) } ) C_ dom G |
| 37 | 9 | simp3i | |- dom G C_ ( C ... D ) |
| 38 | 36 37 | sstri | |- dom ( G \ { (/) } ) C_ ( C ... D ) |
| 39 | ss2in | |- ( ( dom ( F \ { (/) } ) C_ ( A ... B ) /\ dom ( G \ { (/) } ) C_ ( C ... D ) ) -> ( dom ( F \ { (/) } ) i^i dom ( G \ { (/) } ) ) C_ ( ( A ... B ) i^i ( C ... D ) ) ) |
|
| 40 | 33 38 39 | mp2an | |- ( dom ( F \ { (/) } ) i^i dom ( G \ { (/) } ) ) C_ ( ( A ... B ) i^i ( C ... D ) ) |
| 41 | fzdisj | |- ( B < C -> ( ( A ... B ) i^i ( C ... D ) ) = (/) ) |
|
| 42 | 3 41 | ax-mp | |- ( ( A ... B ) i^i ( C ... D ) ) = (/) |
| 43 | sseq0 | |- ( ( ( dom ( F \ { (/) } ) i^i dom ( G \ { (/) } ) ) C_ ( ( A ... B ) i^i ( C ... D ) ) /\ ( ( A ... B ) i^i ( C ... D ) ) = (/) ) -> ( dom ( F \ { (/) } ) i^i dom ( G \ { (/) } ) ) = (/) ) |
|
| 44 | 40 42 43 | mp2an | |- ( dom ( F \ { (/) } ) i^i dom ( G \ { (/) } ) ) = (/) |
| 45 | funun | |- ( ( ( Fun ( F \ { (/) } ) /\ Fun ( G \ { (/) } ) ) /\ ( dom ( F \ { (/) } ) i^i dom ( G \ { (/) } ) ) = (/) ) -> Fun ( ( F \ { (/) } ) u. ( G \ { (/) } ) ) ) |
|
| 46 | 28 44 45 | mp2an | |- Fun ( ( F \ { (/) } ) u. ( G \ { (/) } ) ) |
| 47 | difundir | |- ( ( F u. G ) \ { (/) } ) = ( ( F \ { (/) } ) u. ( G \ { (/) } ) ) |
|
| 48 | 47 | funeqi | |- ( Fun ( ( F u. G ) \ { (/) } ) <-> Fun ( ( F \ { (/) } ) u. ( G \ { (/) } ) ) ) |
| 49 | 46 48 | mpbir | |- Fun ( ( F u. G ) \ { (/) } ) |
| 50 | dmun | |- dom ( F u. G ) = ( dom F u. dom G ) |
|
| 51 | 13 | nnzi | |- B e. ZZ |
| 52 | 11 | nnzi | |- D e. ZZ |
| 53 | 14 16 22 | letri | |- ( ( B <_ C /\ C <_ D ) -> B <_ D ) |
| 54 | 17 21 53 | mp2an | |- B <_ D |
| 55 | eluz2 | |- ( D e. ( ZZ>= ` B ) <-> ( B e. ZZ /\ D e. ZZ /\ B <_ D ) ) |
|
| 56 | 51 52 54 55 | mpbir3an | |- D e. ( ZZ>= ` B ) |
| 57 | fzss2 | |- ( D e. ( ZZ>= ` B ) -> ( A ... B ) C_ ( A ... D ) ) |
|
| 58 | 56 57 | ax-mp | |- ( A ... B ) C_ ( A ... D ) |
| 59 | 32 58 | sstri | |- dom F C_ ( A ... D ) |
| 60 | 7 | nnzi | |- A e. ZZ |
| 61 | 15 | nnzi | |- C e. ZZ |
| 62 | eluz2 | |- ( C e. ( ZZ>= ` A ) <-> ( A e. ZZ /\ C e. ZZ /\ A <_ C ) ) |
|
| 63 | 60 61 20 62 | mpbir3an | |- C e. ( ZZ>= ` A ) |
| 64 | fzss1 | |- ( C e. ( ZZ>= ` A ) -> ( C ... D ) C_ ( A ... D ) ) |
|
| 65 | 63 64 | ax-mp | |- ( C ... D ) C_ ( A ... D ) |
| 66 | 37 65 | sstri | |- dom G C_ ( A ... D ) |
| 67 | 59 66 | unssi | |- ( dom F u. dom G ) C_ ( A ... D ) |
| 68 | 50 67 | eqsstri | |- dom ( F u. G ) C_ ( A ... D ) |
| 69 | isstruct | |- ( ( F u. G ) Struct <. A , D >. <-> ( ( A e. NN /\ D e. NN /\ A <_ D ) /\ Fun ( ( F u. G ) \ { (/) } ) /\ dom ( F u. G ) C_ ( A ... D ) ) ) |
|
| 70 | 25 49 68 69 | mpbir3an | |- ( F u. G ) Struct <. A , D >. |