This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of all subspaces of a normed complex vector space. (Contributed by NM, 26-Jan-2008) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sspval.g | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| sspval.s | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| sspval.n | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| sspval.h | ⊢ 𝐻 = ( SubSp ‘ 𝑈 ) | ||
| Assertion | sspval | ⊢ ( 𝑈 ∈ NrmCVec → 𝐻 = { 𝑤 ∈ NrmCVec ∣ ( ( +𝑣 ‘ 𝑤 ) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ 𝑆 ∧ ( normCV ‘ 𝑤 ) ⊆ 𝑁 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspval.g | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 2 | sspval.s | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 3 | sspval.n | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 4 | sspval.h | ⊢ 𝐻 = ( SubSp ‘ 𝑈 ) | |
| 5 | fveq2 | ⊢ ( 𝑢 = 𝑈 → ( +𝑣 ‘ 𝑢 ) = ( +𝑣 ‘ 𝑈 ) ) | |
| 6 | 5 1 | eqtr4di | ⊢ ( 𝑢 = 𝑈 → ( +𝑣 ‘ 𝑢 ) = 𝐺 ) |
| 7 | 6 | sseq2d | ⊢ ( 𝑢 = 𝑈 → ( ( +𝑣 ‘ 𝑤 ) ⊆ ( +𝑣 ‘ 𝑢 ) ↔ ( +𝑣 ‘ 𝑤 ) ⊆ 𝐺 ) ) |
| 8 | fveq2 | ⊢ ( 𝑢 = 𝑈 → ( ·𝑠OLD ‘ 𝑢 ) = ( ·𝑠OLD ‘ 𝑈 ) ) | |
| 9 | 8 2 | eqtr4di | ⊢ ( 𝑢 = 𝑈 → ( ·𝑠OLD ‘ 𝑢 ) = 𝑆 ) |
| 10 | 9 | sseq2d | ⊢ ( 𝑢 = 𝑈 → ( ( ·𝑠OLD ‘ 𝑤 ) ⊆ ( ·𝑠OLD ‘ 𝑢 ) ↔ ( ·𝑠OLD ‘ 𝑤 ) ⊆ 𝑆 ) ) |
| 11 | fveq2 | ⊢ ( 𝑢 = 𝑈 → ( normCV ‘ 𝑢 ) = ( normCV ‘ 𝑈 ) ) | |
| 12 | 11 3 | eqtr4di | ⊢ ( 𝑢 = 𝑈 → ( normCV ‘ 𝑢 ) = 𝑁 ) |
| 13 | 12 | sseq2d | ⊢ ( 𝑢 = 𝑈 → ( ( normCV ‘ 𝑤 ) ⊆ ( normCV ‘ 𝑢 ) ↔ ( normCV ‘ 𝑤 ) ⊆ 𝑁 ) ) |
| 14 | 7 10 13 | 3anbi123d | ⊢ ( 𝑢 = 𝑈 → ( ( ( +𝑣 ‘ 𝑤 ) ⊆ ( +𝑣 ‘ 𝑢 ) ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ ( ·𝑠OLD ‘ 𝑢 ) ∧ ( normCV ‘ 𝑤 ) ⊆ ( normCV ‘ 𝑢 ) ) ↔ ( ( +𝑣 ‘ 𝑤 ) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ 𝑆 ∧ ( normCV ‘ 𝑤 ) ⊆ 𝑁 ) ) ) |
| 15 | 14 | rabbidv | ⊢ ( 𝑢 = 𝑈 → { 𝑤 ∈ NrmCVec ∣ ( ( +𝑣 ‘ 𝑤 ) ⊆ ( +𝑣 ‘ 𝑢 ) ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ ( ·𝑠OLD ‘ 𝑢 ) ∧ ( normCV ‘ 𝑤 ) ⊆ ( normCV ‘ 𝑢 ) ) } = { 𝑤 ∈ NrmCVec ∣ ( ( +𝑣 ‘ 𝑤 ) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ 𝑆 ∧ ( normCV ‘ 𝑤 ) ⊆ 𝑁 ) } ) |
| 16 | df-ssp | ⊢ SubSp = ( 𝑢 ∈ NrmCVec ↦ { 𝑤 ∈ NrmCVec ∣ ( ( +𝑣 ‘ 𝑤 ) ⊆ ( +𝑣 ‘ 𝑢 ) ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ ( ·𝑠OLD ‘ 𝑢 ) ∧ ( normCV ‘ 𝑤 ) ⊆ ( normCV ‘ 𝑢 ) ) } ) | |
| 17 | 1 | fvexi | ⊢ 𝐺 ∈ V |
| 18 | 17 | pwex | ⊢ 𝒫 𝐺 ∈ V |
| 19 | 2 | fvexi | ⊢ 𝑆 ∈ V |
| 20 | 19 | pwex | ⊢ 𝒫 𝑆 ∈ V |
| 21 | 18 20 | xpex | ⊢ ( 𝒫 𝐺 × 𝒫 𝑆 ) ∈ V |
| 22 | 3 | fvexi | ⊢ 𝑁 ∈ V |
| 23 | 22 | pwex | ⊢ 𝒫 𝑁 ∈ V |
| 24 | 21 23 | xpex | ⊢ ( ( 𝒫 𝐺 × 𝒫 𝑆 ) × 𝒫 𝑁 ) ∈ V |
| 25 | rabss | ⊢ ( { 𝑤 ∈ NrmCVec ∣ ( ( +𝑣 ‘ 𝑤 ) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ 𝑆 ∧ ( normCV ‘ 𝑤 ) ⊆ 𝑁 ) } ⊆ ( ( 𝒫 𝐺 × 𝒫 𝑆 ) × 𝒫 𝑁 ) ↔ ∀ 𝑤 ∈ NrmCVec ( ( ( +𝑣 ‘ 𝑤 ) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ 𝑆 ∧ ( normCV ‘ 𝑤 ) ⊆ 𝑁 ) → 𝑤 ∈ ( ( 𝒫 𝐺 × 𝒫 𝑆 ) × 𝒫 𝑁 ) ) ) | |
| 26 | fvex | ⊢ ( +𝑣 ‘ 𝑤 ) ∈ V | |
| 27 | 26 | elpw | ⊢ ( ( +𝑣 ‘ 𝑤 ) ∈ 𝒫 𝐺 ↔ ( +𝑣 ‘ 𝑤 ) ⊆ 𝐺 ) |
| 28 | fvex | ⊢ ( ·𝑠OLD ‘ 𝑤 ) ∈ V | |
| 29 | 28 | elpw | ⊢ ( ( ·𝑠OLD ‘ 𝑤 ) ∈ 𝒫 𝑆 ↔ ( ·𝑠OLD ‘ 𝑤 ) ⊆ 𝑆 ) |
| 30 | opelxpi | ⊢ ( ( ( +𝑣 ‘ 𝑤 ) ∈ 𝒫 𝐺 ∧ ( ·𝑠OLD ‘ 𝑤 ) ∈ 𝒫 𝑆 ) → 〈 ( +𝑣 ‘ 𝑤 ) , ( ·𝑠OLD ‘ 𝑤 ) 〉 ∈ ( 𝒫 𝐺 × 𝒫 𝑆 ) ) | |
| 31 | 27 29 30 | syl2anbr | ⊢ ( ( ( +𝑣 ‘ 𝑤 ) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ 𝑆 ) → 〈 ( +𝑣 ‘ 𝑤 ) , ( ·𝑠OLD ‘ 𝑤 ) 〉 ∈ ( 𝒫 𝐺 × 𝒫 𝑆 ) ) |
| 32 | fvex | ⊢ ( normCV ‘ 𝑤 ) ∈ V | |
| 33 | 32 | elpw | ⊢ ( ( normCV ‘ 𝑤 ) ∈ 𝒫 𝑁 ↔ ( normCV ‘ 𝑤 ) ⊆ 𝑁 ) |
| 34 | 33 | biimpri | ⊢ ( ( normCV ‘ 𝑤 ) ⊆ 𝑁 → ( normCV ‘ 𝑤 ) ∈ 𝒫 𝑁 ) |
| 35 | opelxpi | ⊢ ( ( 〈 ( +𝑣 ‘ 𝑤 ) , ( ·𝑠OLD ‘ 𝑤 ) 〉 ∈ ( 𝒫 𝐺 × 𝒫 𝑆 ) ∧ ( normCV ‘ 𝑤 ) ∈ 𝒫 𝑁 ) → 〈 〈 ( +𝑣 ‘ 𝑤 ) , ( ·𝑠OLD ‘ 𝑤 ) 〉 , ( normCV ‘ 𝑤 ) 〉 ∈ ( ( 𝒫 𝐺 × 𝒫 𝑆 ) × 𝒫 𝑁 ) ) | |
| 36 | 31 34 35 | syl2an | ⊢ ( ( ( ( +𝑣 ‘ 𝑤 ) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ 𝑆 ) ∧ ( normCV ‘ 𝑤 ) ⊆ 𝑁 ) → 〈 〈 ( +𝑣 ‘ 𝑤 ) , ( ·𝑠OLD ‘ 𝑤 ) 〉 , ( normCV ‘ 𝑤 ) 〉 ∈ ( ( 𝒫 𝐺 × 𝒫 𝑆 ) × 𝒫 𝑁 ) ) |
| 37 | 36 | 3impa | ⊢ ( ( ( +𝑣 ‘ 𝑤 ) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ 𝑆 ∧ ( normCV ‘ 𝑤 ) ⊆ 𝑁 ) → 〈 〈 ( +𝑣 ‘ 𝑤 ) , ( ·𝑠OLD ‘ 𝑤 ) 〉 , ( normCV ‘ 𝑤 ) 〉 ∈ ( ( 𝒫 𝐺 × 𝒫 𝑆 ) × 𝒫 𝑁 ) ) |
| 38 | eqid | ⊢ ( +𝑣 ‘ 𝑤 ) = ( +𝑣 ‘ 𝑤 ) | |
| 39 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑤 ) = ( ·𝑠OLD ‘ 𝑤 ) | |
| 40 | eqid | ⊢ ( normCV ‘ 𝑤 ) = ( normCV ‘ 𝑤 ) | |
| 41 | 38 39 40 | nvop | ⊢ ( 𝑤 ∈ NrmCVec → 𝑤 = 〈 〈 ( +𝑣 ‘ 𝑤 ) , ( ·𝑠OLD ‘ 𝑤 ) 〉 , ( normCV ‘ 𝑤 ) 〉 ) |
| 42 | 41 | eleq1d | ⊢ ( 𝑤 ∈ NrmCVec → ( 𝑤 ∈ ( ( 𝒫 𝐺 × 𝒫 𝑆 ) × 𝒫 𝑁 ) ↔ 〈 〈 ( +𝑣 ‘ 𝑤 ) , ( ·𝑠OLD ‘ 𝑤 ) 〉 , ( normCV ‘ 𝑤 ) 〉 ∈ ( ( 𝒫 𝐺 × 𝒫 𝑆 ) × 𝒫 𝑁 ) ) ) |
| 43 | 37 42 | imbitrrid | ⊢ ( 𝑤 ∈ NrmCVec → ( ( ( +𝑣 ‘ 𝑤 ) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ 𝑆 ∧ ( normCV ‘ 𝑤 ) ⊆ 𝑁 ) → 𝑤 ∈ ( ( 𝒫 𝐺 × 𝒫 𝑆 ) × 𝒫 𝑁 ) ) ) |
| 44 | 25 43 | mprgbir | ⊢ { 𝑤 ∈ NrmCVec ∣ ( ( +𝑣 ‘ 𝑤 ) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ 𝑆 ∧ ( normCV ‘ 𝑤 ) ⊆ 𝑁 ) } ⊆ ( ( 𝒫 𝐺 × 𝒫 𝑆 ) × 𝒫 𝑁 ) |
| 45 | 24 44 | ssexi | ⊢ { 𝑤 ∈ NrmCVec ∣ ( ( +𝑣 ‘ 𝑤 ) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ 𝑆 ∧ ( normCV ‘ 𝑤 ) ⊆ 𝑁 ) } ∈ V |
| 46 | 15 16 45 | fvmpt | ⊢ ( 𝑈 ∈ NrmCVec → ( SubSp ‘ 𝑈 ) = { 𝑤 ∈ NrmCVec ∣ ( ( +𝑣 ‘ 𝑤 ) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ 𝑆 ∧ ( normCV ‘ 𝑤 ) ⊆ 𝑁 ) } ) |
| 47 | 4 46 | eqtrid | ⊢ ( 𝑈 ∈ NrmCVec → 𝐻 = { 𝑤 ∈ NrmCVec ∣ ( ( +𝑣 ‘ 𝑤 ) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ 𝑆 ∧ ( normCV ‘ 𝑤 ) ⊆ 𝑁 ) } ) |