This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a subspace." (Contributed by NM, 26-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isssp.g | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| isssp.f | ⊢ 𝐹 = ( +𝑣 ‘ 𝑊 ) | ||
| isssp.s | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| isssp.r | ⊢ 𝑅 = ( ·𝑠OLD ‘ 𝑊 ) | ||
| isssp.n | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| isssp.m | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | ||
| isssp.h | ⊢ 𝐻 = ( SubSp ‘ 𝑈 ) | ||
| Assertion | isssp | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑊 ∈ 𝐻 ↔ ( 𝑊 ∈ NrmCVec ∧ ( 𝐹 ⊆ 𝐺 ∧ 𝑅 ⊆ 𝑆 ∧ 𝑀 ⊆ 𝑁 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isssp.g | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 2 | isssp.f | ⊢ 𝐹 = ( +𝑣 ‘ 𝑊 ) | |
| 3 | isssp.s | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | isssp.r | ⊢ 𝑅 = ( ·𝑠OLD ‘ 𝑊 ) | |
| 5 | isssp.n | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 6 | isssp.m | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | |
| 7 | isssp.h | ⊢ 𝐻 = ( SubSp ‘ 𝑈 ) | |
| 8 | 1 3 5 7 | sspval | ⊢ ( 𝑈 ∈ NrmCVec → 𝐻 = { 𝑤 ∈ NrmCVec ∣ ( ( +𝑣 ‘ 𝑤 ) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ 𝑆 ∧ ( normCV ‘ 𝑤 ) ⊆ 𝑁 ) } ) |
| 9 | 8 | eleq2d | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑊 ∈ 𝐻 ↔ 𝑊 ∈ { 𝑤 ∈ NrmCVec ∣ ( ( +𝑣 ‘ 𝑤 ) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ 𝑆 ∧ ( normCV ‘ 𝑤 ) ⊆ 𝑁 ) } ) ) |
| 10 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( +𝑣 ‘ 𝑤 ) = ( +𝑣 ‘ 𝑊 ) ) | |
| 11 | 10 2 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( +𝑣 ‘ 𝑤 ) = 𝐹 ) |
| 12 | 11 | sseq1d | ⊢ ( 𝑤 = 𝑊 → ( ( +𝑣 ‘ 𝑤 ) ⊆ 𝐺 ↔ 𝐹 ⊆ 𝐺 ) ) |
| 13 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( ·𝑠OLD ‘ 𝑤 ) = ( ·𝑠OLD ‘ 𝑊 ) ) | |
| 14 | 13 4 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( ·𝑠OLD ‘ 𝑤 ) = 𝑅 ) |
| 15 | 14 | sseq1d | ⊢ ( 𝑤 = 𝑊 → ( ( ·𝑠OLD ‘ 𝑤 ) ⊆ 𝑆 ↔ 𝑅 ⊆ 𝑆 ) ) |
| 16 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( normCV ‘ 𝑤 ) = ( normCV ‘ 𝑊 ) ) | |
| 17 | 16 6 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( normCV ‘ 𝑤 ) = 𝑀 ) |
| 18 | 17 | sseq1d | ⊢ ( 𝑤 = 𝑊 → ( ( normCV ‘ 𝑤 ) ⊆ 𝑁 ↔ 𝑀 ⊆ 𝑁 ) ) |
| 19 | 12 15 18 | 3anbi123d | ⊢ ( 𝑤 = 𝑊 → ( ( ( +𝑣 ‘ 𝑤 ) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ 𝑆 ∧ ( normCV ‘ 𝑤 ) ⊆ 𝑁 ) ↔ ( 𝐹 ⊆ 𝐺 ∧ 𝑅 ⊆ 𝑆 ∧ 𝑀 ⊆ 𝑁 ) ) ) |
| 20 | 19 | elrab | ⊢ ( 𝑊 ∈ { 𝑤 ∈ NrmCVec ∣ ( ( +𝑣 ‘ 𝑤 ) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ 𝑆 ∧ ( normCV ‘ 𝑤 ) ⊆ 𝑁 ) } ↔ ( 𝑊 ∈ NrmCVec ∧ ( 𝐹 ⊆ 𝐺 ∧ 𝑅 ⊆ 𝑆 ∧ 𝑀 ⊆ 𝑁 ) ) ) |
| 21 | 9 20 | bitrdi | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑊 ∈ 𝐻 ↔ ( 𝑊 ∈ NrmCVec ∧ ( 𝐹 ⊆ 𝐺 ∧ 𝑅 ⊆ 𝑆 ∧ 𝑀 ⊆ 𝑁 ) ) ) ) |