This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all subspaces of normed complex vector spaces. (Contributed by NM, 26-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ssp | ⊢ SubSp = ( 𝑢 ∈ NrmCVec ↦ { 𝑤 ∈ NrmCVec ∣ ( ( +𝑣 ‘ 𝑤 ) ⊆ ( +𝑣 ‘ 𝑢 ) ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ ( ·𝑠OLD ‘ 𝑢 ) ∧ ( normCV ‘ 𝑤 ) ⊆ ( normCV ‘ 𝑢 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | css | ⊢ SubSp | |
| 1 | vu | ⊢ 𝑢 | |
| 2 | cnv | ⊢ NrmCVec | |
| 3 | vw | ⊢ 𝑤 | |
| 4 | cpv | ⊢ +𝑣 | |
| 5 | 3 | cv | ⊢ 𝑤 |
| 6 | 5 4 | cfv | ⊢ ( +𝑣 ‘ 𝑤 ) |
| 7 | 1 | cv | ⊢ 𝑢 |
| 8 | 7 4 | cfv | ⊢ ( +𝑣 ‘ 𝑢 ) |
| 9 | 6 8 | wss | ⊢ ( +𝑣 ‘ 𝑤 ) ⊆ ( +𝑣 ‘ 𝑢 ) |
| 10 | cns | ⊢ ·𝑠OLD | |
| 11 | 5 10 | cfv | ⊢ ( ·𝑠OLD ‘ 𝑤 ) |
| 12 | 7 10 | cfv | ⊢ ( ·𝑠OLD ‘ 𝑢 ) |
| 13 | 11 12 | wss | ⊢ ( ·𝑠OLD ‘ 𝑤 ) ⊆ ( ·𝑠OLD ‘ 𝑢 ) |
| 14 | cnmcv | ⊢ normCV | |
| 15 | 5 14 | cfv | ⊢ ( normCV ‘ 𝑤 ) |
| 16 | 7 14 | cfv | ⊢ ( normCV ‘ 𝑢 ) |
| 17 | 15 16 | wss | ⊢ ( normCV ‘ 𝑤 ) ⊆ ( normCV ‘ 𝑢 ) |
| 18 | 9 13 17 | w3a | ⊢ ( ( +𝑣 ‘ 𝑤 ) ⊆ ( +𝑣 ‘ 𝑢 ) ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ ( ·𝑠OLD ‘ 𝑢 ) ∧ ( normCV ‘ 𝑤 ) ⊆ ( normCV ‘ 𝑢 ) ) |
| 19 | 18 3 2 | crab | ⊢ { 𝑤 ∈ NrmCVec ∣ ( ( +𝑣 ‘ 𝑤 ) ⊆ ( +𝑣 ‘ 𝑢 ) ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ ( ·𝑠OLD ‘ 𝑢 ) ∧ ( normCV ‘ 𝑤 ) ⊆ ( normCV ‘ 𝑢 ) ) } |
| 20 | 1 2 19 | cmpt | ⊢ ( 𝑢 ∈ NrmCVec ↦ { 𝑤 ∈ NrmCVec ∣ ( ( +𝑣 ‘ 𝑤 ) ⊆ ( +𝑣 ‘ 𝑢 ) ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ ( ·𝑠OLD ‘ 𝑢 ) ∧ ( normCV ‘ 𝑤 ) ⊆ ( normCV ‘ 𝑢 ) ) } ) |
| 21 | 0 20 | wceq | ⊢ SubSp = ( 𝑢 ∈ NrmCVec ↦ { 𝑤 ∈ NrmCVec ∣ ( ( +𝑣 ‘ 𝑤 ) ⊆ ( +𝑣 ‘ 𝑢 ) ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ ( ·𝑠OLD ‘ 𝑢 ) ∧ ( normCV ‘ 𝑤 ) ⊆ ( normCV ‘ 𝑢 ) ) } ) |