This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of all subspaces of a normed complex vector space. (Contributed by NM, 26-Jan-2008) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sspval.g | |- G = ( +v ` U ) |
|
| sspval.s | |- S = ( .sOLD ` U ) |
||
| sspval.n | |- N = ( normCV ` U ) |
||
| sspval.h | |- H = ( SubSp ` U ) |
||
| Assertion | sspval | |- ( U e. NrmCVec -> H = { w e. NrmCVec | ( ( +v ` w ) C_ G /\ ( .sOLD ` w ) C_ S /\ ( normCV ` w ) C_ N ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspval.g | |- G = ( +v ` U ) |
|
| 2 | sspval.s | |- S = ( .sOLD ` U ) |
|
| 3 | sspval.n | |- N = ( normCV ` U ) |
|
| 4 | sspval.h | |- H = ( SubSp ` U ) |
|
| 5 | fveq2 | |- ( u = U -> ( +v ` u ) = ( +v ` U ) ) |
|
| 6 | 5 1 | eqtr4di | |- ( u = U -> ( +v ` u ) = G ) |
| 7 | 6 | sseq2d | |- ( u = U -> ( ( +v ` w ) C_ ( +v ` u ) <-> ( +v ` w ) C_ G ) ) |
| 8 | fveq2 | |- ( u = U -> ( .sOLD ` u ) = ( .sOLD ` U ) ) |
|
| 9 | 8 2 | eqtr4di | |- ( u = U -> ( .sOLD ` u ) = S ) |
| 10 | 9 | sseq2d | |- ( u = U -> ( ( .sOLD ` w ) C_ ( .sOLD ` u ) <-> ( .sOLD ` w ) C_ S ) ) |
| 11 | fveq2 | |- ( u = U -> ( normCV ` u ) = ( normCV ` U ) ) |
|
| 12 | 11 3 | eqtr4di | |- ( u = U -> ( normCV ` u ) = N ) |
| 13 | 12 | sseq2d | |- ( u = U -> ( ( normCV ` w ) C_ ( normCV ` u ) <-> ( normCV ` w ) C_ N ) ) |
| 14 | 7 10 13 | 3anbi123d | |- ( u = U -> ( ( ( +v ` w ) C_ ( +v ` u ) /\ ( .sOLD ` w ) C_ ( .sOLD ` u ) /\ ( normCV ` w ) C_ ( normCV ` u ) ) <-> ( ( +v ` w ) C_ G /\ ( .sOLD ` w ) C_ S /\ ( normCV ` w ) C_ N ) ) ) |
| 15 | 14 | rabbidv | |- ( u = U -> { w e. NrmCVec | ( ( +v ` w ) C_ ( +v ` u ) /\ ( .sOLD ` w ) C_ ( .sOLD ` u ) /\ ( normCV ` w ) C_ ( normCV ` u ) ) } = { w e. NrmCVec | ( ( +v ` w ) C_ G /\ ( .sOLD ` w ) C_ S /\ ( normCV ` w ) C_ N ) } ) |
| 16 | df-ssp | |- SubSp = ( u e. NrmCVec |-> { w e. NrmCVec | ( ( +v ` w ) C_ ( +v ` u ) /\ ( .sOLD ` w ) C_ ( .sOLD ` u ) /\ ( normCV ` w ) C_ ( normCV ` u ) ) } ) |
|
| 17 | 1 | fvexi | |- G e. _V |
| 18 | 17 | pwex | |- ~P G e. _V |
| 19 | 2 | fvexi | |- S e. _V |
| 20 | 19 | pwex | |- ~P S e. _V |
| 21 | 18 20 | xpex | |- ( ~P G X. ~P S ) e. _V |
| 22 | 3 | fvexi | |- N e. _V |
| 23 | 22 | pwex | |- ~P N e. _V |
| 24 | 21 23 | xpex | |- ( ( ~P G X. ~P S ) X. ~P N ) e. _V |
| 25 | rabss | |- ( { w e. NrmCVec | ( ( +v ` w ) C_ G /\ ( .sOLD ` w ) C_ S /\ ( normCV ` w ) C_ N ) } C_ ( ( ~P G X. ~P S ) X. ~P N ) <-> A. w e. NrmCVec ( ( ( +v ` w ) C_ G /\ ( .sOLD ` w ) C_ S /\ ( normCV ` w ) C_ N ) -> w e. ( ( ~P G X. ~P S ) X. ~P N ) ) ) |
|
| 26 | fvex | |- ( +v ` w ) e. _V |
|
| 27 | 26 | elpw | |- ( ( +v ` w ) e. ~P G <-> ( +v ` w ) C_ G ) |
| 28 | fvex | |- ( .sOLD ` w ) e. _V |
|
| 29 | 28 | elpw | |- ( ( .sOLD ` w ) e. ~P S <-> ( .sOLD ` w ) C_ S ) |
| 30 | opelxpi | |- ( ( ( +v ` w ) e. ~P G /\ ( .sOLD ` w ) e. ~P S ) -> <. ( +v ` w ) , ( .sOLD ` w ) >. e. ( ~P G X. ~P S ) ) |
|
| 31 | 27 29 30 | syl2anbr | |- ( ( ( +v ` w ) C_ G /\ ( .sOLD ` w ) C_ S ) -> <. ( +v ` w ) , ( .sOLD ` w ) >. e. ( ~P G X. ~P S ) ) |
| 32 | fvex | |- ( normCV ` w ) e. _V |
|
| 33 | 32 | elpw | |- ( ( normCV ` w ) e. ~P N <-> ( normCV ` w ) C_ N ) |
| 34 | 33 | biimpri | |- ( ( normCV ` w ) C_ N -> ( normCV ` w ) e. ~P N ) |
| 35 | opelxpi | |- ( ( <. ( +v ` w ) , ( .sOLD ` w ) >. e. ( ~P G X. ~P S ) /\ ( normCV ` w ) e. ~P N ) -> <. <. ( +v ` w ) , ( .sOLD ` w ) >. , ( normCV ` w ) >. e. ( ( ~P G X. ~P S ) X. ~P N ) ) |
|
| 36 | 31 34 35 | syl2an | |- ( ( ( ( +v ` w ) C_ G /\ ( .sOLD ` w ) C_ S ) /\ ( normCV ` w ) C_ N ) -> <. <. ( +v ` w ) , ( .sOLD ` w ) >. , ( normCV ` w ) >. e. ( ( ~P G X. ~P S ) X. ~P N ) ) |
| 37 | 36 | 3impa | |- ( ( ( +v ` w ) C_ G /\ ( .sOLD ` w ) C_ S /\ ( normCV ` w ) C_ N ) -> <. <. ( +v ` w ) , ( .sOLD ` w ) >. , ( normCV ` w ) >. e. ( ( ~P G X. ~P S ) X. ~P N ) ) |
| 38 | eqid | |- ( +v ` w ) = ( +v ` w ) |
|
| 39 | eqid | |- ( .sOLD ` w ) = ( .sOLD ` w ) |
|
| 40 | eqid | |- ( normCV ` w ) = ( normCV ` w ) |
|
| 41 | 38 39 40 | nvop | |- ( w e. NrmCVec -> w = <. <. ( +v ` w ) , ( .sOLD ` w ) >. , ( normCV ` w ) >. ) |
| 42 | 41 | eleq1d | |- ( w e. NrmCVec -> ( w e. ( ( ~P G X. ~P S ) X. ~P N ) <-> <. <. ( +v ` w ) , ( .sOLD ` w ) >. , ( normCV ` w ) >. e. ( ( ~P G X. ~P S ) X. ~P N ) ) ) |
| 43 | 37 42 | imbitrrid | |- ( w e. NrmCVec -> ( ( ( +v ` w ) C_ G /\ ( .sOLD ` w ) C_ S /\ ( normCV ` w ) C_ N ) -> w e. ( ( ~P G X. ~P S ) X. ~P N ) ) ) |
| 44 | 25 43 | mprgbir | |- { w e. NrmCVec | ( ( +v ` w ) C_ G /\ ( .sOLD ` w ) C_ S /\ ( normCV ` w ) C_ N ) } C_ ( ( ~P G X. ~P S ) X. ~P N ) |
| 45 | 24 44 | ssexi | |- { w e. NrmCVec | ( ( +v ` w ) C_ G /\ ( .sOLD ` w ) C_ S /\ ( normCV ` w ) C_ N ) } e. _V |
| 46 | 15 16 45 | fvmpt | |- ( U e. NrmCVec -> ( SubSp ` U ) = { w e. NrmCVec | ( ( +v ` w ) C_ G /\ ( .sOLD ` w ) C_ S /\ ( normCV ` w ) C_ N ) } ) |
| 47 | 4 46 | eqtrid | |- ( U e. NrmCVec -> H = { w e. NrmCVec | ( ( +v ` w ) C_ G /\ ( .sOLD ` w ) C_ S /\ ( normCV ` w ) C_ N ) } ) |