This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex inner product space in terms of ordered pair components. (Contributed by NM, 11-Sep-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvop.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| nvop.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| nvop.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| Assertion | nvop | ⊢ ( 𝑈 ∈ NrmCVec → 𝑈 = 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvop.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 2 | nvop.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 3 | nvop.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 4 | nvrel | ⊢ Rel NrmCVec | |
| 5 | 1st2nd | ⊢ ( ( Rel NrmCVec ∧ 𝑈 ∈ NrmCVec ) → 𝑈 = 〈 ( 1st ‘ 𝑈 ) , ( 2nd ‘ 𝑈 ) 〉 ) | |
| 6 | 4 5 | mpan | ⊢ ( 𝑈 ∈ NrmCVec → 𝑈 = 〈 ( 1st ‘ 𝑈 ) , ( 2nd ‘ 𝑈 ) 〉 ) |
| 7 | 3 | nmcvfval | ⊢ 𝑁 = ( 2nd ‘ 𝑈 ) |
| 8 | 7 | opeq2i | ⊢ 〈 ( 1st ‘ 𝑈 ) , 𝑁 〉 = 〈 ( 1st ‘ 𝑈 ) , ( 2nd ‘ 𝑈 ) 〉 |
| 9 | eqid | ⊢ ( 1st ‘ 𝑈 ) = ( 1st ‘ 𝑈 ) | |
| 10 | 9 1 2 | nvvop | ⊢ ( 𝑈 ∈ NrmCVec → ( 1st ‘ 𝑈 ) = 〈 𝐺 , 𝑆 〉 ) |
| 11 | 10 | opeq1d | ⊢ ( 𝑈 ∈ NrmCVec → 〈 ( 1st ‘ 𝑈 ) , 𝑁 〉 = 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ) |
| 12 | 8 11 | eqtr3id | ⊢ ( 𝑈 ∈ NrmCVec → 〈 ( 1st ‘ 𝑈 ) , ( 2nd ‘ 𝑈 ) 〉 = 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ) |
| 13 | 6 12 | eqtrd | ⊢ ( 𝑈 ∈ NrmCVec → 𝑈 = 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ) |