This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Infer subset relation on morphisms from the subcategory subset relation. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ssc2.1 | ⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) | |
| ssc2.2 | ⊢ ( 𝜑 → 𝐻 ⊆cat 𝐽 ) | ||
| ssc2.3 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) | ||
| ssc2.4 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) | ||
| Assertion | ssc2 | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) ⊆ ( 𝑋 𝐽 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssc2.1 | ⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) | |
| 2 | ssc2.2 | ⊢ ( 𝜑 → 𝐻 ⊆cat 𝐽 ) | |
| 3 | ssc2.3 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) | |
| 4 | ssc2.4 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) | |
| 5 | eqidd | ⊢ ( 𝜑 → dom dom 𝐽 = dom dom 𝐽 ) | |
| 6 | 2 5 | sscfn2 | ⊢ ( 𝜑 → 𝐽 Fn ( dom dom 𝐽 × dom dom 𝐽 ) ) |
| 7 | sscrel | ⊢ Rel ⊆cat | |
| 8 | 7 | brrelex2i | ⊢ ( 𝐻 ⊆cat 𝐽 → 𝐽 ∈ V ) |
| 9 | dmexg | ⊢ ( 𝐽 ∈ V → dom 𝐽 ∈ V ) | |
| 10 | dmexg | ⊢ ( dom 𝐽 ∈ V → dom dom 𝐽 ∈ V ) | |
| 11 | 2 8 9 10 | 4syl | ⊢ ( 𝜑 → dom dom 𝐽 ∈ V ) |
| 12 | 1 6 11 | isssc | ⊢ ( 𝜑 → ( 𝐻 ⊆cat 𝐽 ↔ ( 𝑆 ⊆ dom dom 𝐽 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) ) ) |
| 13 | 2 12 | mpbid | ⊢ ( 𝜑 → ( 𝑆 ⊆ dom dom 𝐽 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) ) |
| 14 | 13 | simprd | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) |
| 15 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑦 ) ) | |
| 16 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 𝐽 𝑦 ) = ( 𝑋 𝐽 𝑦 ) ) | |
| 17 | 15 16 | sseq12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ↔ ( 𝑋 𝐻 𝑦 ) ⊆ ( 𝑋 𝐽 𝑦 ) ) ) |
| 18 | oveq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) ) | |
| 19 | oveq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 𝐽 𝑦 ) = ( 𝑋 𝐽 𝑌 ) ) | |
| 20 | 18 19 | sseq12d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 𝐻 𝑦 ) ⊆ ( 𝑋 𝐽 𝑦 ) ↔ ( 𝑋 𝐻 𝑌 ) ⊆ ( 𝑋 𝐽 𝑌 ) ) ) |
| 21 | 17 20 | rspc2va | ⊢ ( ( ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) → ( 𝑋 𝐻 𝑌 ) ⊆ ( 𝑋 𝐽 𝑌 ) ) |
| 22 | 3 4 14 21 | syl21anc | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) ⊆ ( 𝑋 𝐽 𝑌 ) ) |