This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subcategory subset relation is antisymmetric. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssceq | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) → 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) → 𝐴 ⊆cat 𝐵 ) | |
| 2 | eqidd | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) → dom dom 𝐴 = dom dom 𝐴 ) | |
| 3 | 1 2 | sscfn1 | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) → 𝐴 Fn ( dom dom 𝐴 × dom dom 𝐴 ) ) |
| 4 | simpr | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) → 𝐵 ⊆cat 𝐴 ) | |
| 5 | eqidd | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) → dom dom 𝐵 = dom dom 𝐵 ) | |
| 6 | 4 5 | sscfn1 | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) → 𝐵 Fn ( dom dom 𝐵 × dom dom 𝐵 ) ) |
| 7 | 3 6 1 | ssc1 | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) → dom dom 𝐴 ⊆ dom dom 𝐵 ) |
| 8 | 6 3 4 | ssc1 | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) → dom dom 𝐵 ⊆ dom dom 𝐴 ) |
| 9 | 7 8 | eqssd | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) → dom dom 𝐴 = dom dom 𝐵 ) |
| 10 | 9 | sqxpeqd | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) → ( dom dom 𝐴 × dom dom 𝐴 ) = ( dom dom 𝐵 × dom dom 𝐵 ) ) |
| 11 | 3 | adantr | ⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝐴 Fn ( dom dom 𝐴 × dom dom 𝐴 ) ) |
| 12 | 1 | adantr | ⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝐴 ⊆cat 𝐵 ) |
| 13 | simprl | ⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝑥 ∈ dom dom 𝐴 ) | |
| 14 | simprr | ⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝑦 ∈ dom dom 𝐴 ) | |
| 15 | 11 12 13 14 | ssc2 | ⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → ( 𝑥 𝐴 𝑦 ) ⊆ ( 𝑥 𝐵 𝑦 ) ) |
| 16 | 6 | adantr | ⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝐵 Fn ( dom dom 𝐵 × dom dom 𝐵 ) ) |
| 17 | 4 | adantr | ⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝐵 ⊆cat 𝐴 ) |
| 18 | 7 | adantr | ⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → dom dom 𝐴 ⊆ dom dom 𝐵 ) |
| 19 | 18 13 | sseldd | ⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝑥 ∈ dom dom 𝐵 ) |
| 20 | 18 14 | sseldd | ⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝑦 ∈ dom dom 𝐵 ) |
| 21 | 16 17 19 20 | ssc2 | ⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → ( 𝑥 𝐵 𝑦 ) ⊆ ( 𝑥 𝐴 𝑦 ) ) |
| 22 | 15 21 | eqssd | ⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → ( 𝑥 𝐴 𝑦 ) = ( 𝑥 𝐵 𝑦 ) ) |
| 23 | 22 | ralrimivva | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) → ∀ 𝑥 ∈ dom dom 𝐴 ∀ 𝑦 ∈ dom dom 𝐴 ( 𝑥 𝐴 𝑦 ) = ( 𝑥 𝐵 𝑦 ) ) |
| 24 | eqfnov | ⊢ ( ( 𝐴 Fn ( dom dom 𝐴 × dom dom 𝐴 ) ∧ 𝐵 Fn ( dom dom 𝐵 × dom dom 𝐵 ) ) → ( 𝐴 = 𝐵 ↔ ( ( dom dom 𝐴 × dom dom 𝐴 ) = ( dom dom 𝐵 × dom dom 𝐵 ) ∧ ∀ 𝑥 ∈ dom dom 𝐴 ∀ 𝑦 ∈ dom dom 𝐴 ( 𝑥 𝐴 𝑦 ) = ( 𝑥 𝐵 𝑦 ) ) ) ) | |
| 25 | 3 6 24 | syl2anc | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) → ( 𝐴 = 𝐵 ↔ ( ( dom dom 𝐴 × dom dom 𝐴 ) = ( dom dom 𝐵 × dom dom 𝐵 ) ∧ ∀ 𝑥 ∈ dom dom 𝐴 ∀ 𝑦 ∈ dom dom 𝐴 ( 𝑥 𝐴 𝑦 ) = ( 𝑥 𝐵 𝑦 ) ) ) ) |
| 26 | 10 23 25 | mpbir2and | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) → 𝐴 = 𝐵 ) |