This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subcategory subset relation is defined on functions with square domain. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sscfn1.1 | ⊢ ( 𝜑 → 𝐻 ⊆cat 𝐽 ) | |
| sscfn2.2 | ⊢ ( 𝜑 → 𝑇 = dom dom 𝐽 ) | ||
| Assertion | sscfn2 | ⊢ ( 𝜑 → 𝐽 Fn ( 𝑇 × 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sscfn1.1 | ⊢ ( 𝜑 → 𝐻 ⊆cat 𝐽 ) | |
| 2 | sscfn2.2 | ⊢ ( 𝜑 → 𝑇 = dom dom 𝐽 ) | |
| 3 | brssc | ⊢ ( 𝐻 ⊆cat 𝐽 ↔ ∃ 𝑡 ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑦 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑥 ∈ ( 𝑦 × 𝑦 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) | |
| 4 | 1 3 | sylib | ⊢ ( 𝜑 → ∃ 𝑡 ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑦 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑥 ∈ ( 𝑦 × 𝑦 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) |
| 5 | simpr | ⊢ ( ( 𝜑 ∧ 𝐽 Fn ( 𝑡 × 𝑡 ) ) → 𝐽 Fn ( 𝑡 × 𝑡 ) ) | |
| 6 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝐽 Fn ( 𝑡 × 𝑡 ) ) → 𝑇 = dom dom 𝐽 ) |
| 7 | fndm | ⊢ ( 𝐽 Fn ( 𝑡 × 𝑡 ) → dom 𝐽 = ( 𝑡 × 𝑡 ) ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝜑 ∧ 𝐽 Fn ( 𝑡 × 𝑡 ) ) → dom 𝐽 = ( 𝑡 × 𝑡 ) ) |
| 9 | 8 | dmeqd | ⊢ ( ( 𝜑 ∧ 𝐽 Fn ( 𝑡 × 𝑡 ) ) → dom dom 𝐽 = dom ( 𝑡 × 𝑡 ) ) |
| 10 | dmxpid | ⊢ dom ( 𝑡 × 𝑡 ) = 𝑡 | |
| 11 | 9 10 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝐽 Fn ( 𝑡 × 𝑡 ) ) → dom dom 𝐽 = 𝑡 ) |
| 12 | 6 11 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝐽 Fn ( 𝑡 × 𝑡 ) ) → 𝑡 = 𝑇 ) |
| 13 | 12 | sqxpeqd | ⊢ ( ( 𝜑 ∧ 𝐽 Fn ( 𝑡 × 𝑡 ) ) → ( 𝑡 × 𝑡 ) = ( 𝑇 × 𝑇 ) ) |
| 14 | 13 | fneq2d | ⊢ ( ( 𝜑 ∧ 𝐽 Fn ( 𝑡 × 𝑡 ) ) → ( 𝐽 Fn ( 𝑡 × 𝑡 ) ↔ 𝐽 Fn ( 𝑇 × 𝑇 ) ) ) |
| 15 | 5 14 | mpbid | ⊢ ( ( 𝜑 ∧ 𝐽 Fn ( 𝑡 × 𝑡 ) ) → 𝐽 Fn ( 𝑇 × 𝑇 ) ) |
| 16 | 15 | ex | ⊢ ( 𝜑 → ( 𝐽 Fn ( 𝑡 × 𝑡 ) → 𝐽 Fn ( 𝑇 × 𝑇 ) ) ) |
| 17 | 16 | adantrd | ⊢ ( 𝜑 → ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑦 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑥 ∈ ( 𝑦 × 𝑦 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) → 𝐽 Fn ( 𝑇 × 𝑇 ) ) ) |
| 18 | 17 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑡 ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑦 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑥 ∈ ( 𝑦 × 𝑦 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) → 𝐽 Fn ( 𝑇 × 𝑇 ) ) ) |
| 19 | 4 18 | mpd | ⊢ ( 𝜑 → 𝐽 Fn ( 𝑇 × 𝑇 ) ) |