This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square root function is positive for positive input. (Contributed by Mario Carneiro, 10-Jul-2013) (Revised by Mario Carneiro, 6-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrtgt0 | |- ( ( A e. RR /\ 0 < A ) -> 0 < ( sqrt ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | |- 0 e. RR |
|
| 2 | ltle | |- ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A -> 0 <_ A ) ) |
|
| 3 | 1 2 | mpan | |- ( A e. RR -> ( 0 < A -> 0 <_ A ) ) |
| 4 | 3 | imp | |- ( ( A e. RR /\ 0 < A ) -> 0 <_ A ) |
| 5 | resqrtcl | |- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` A ) e. RR ) |
|
| 6 | 4 5 | syldan | |- ( ( A e. RR /\ 0 < A ) -> ( sqrt ` A ) e. RR ) |
| 7 | sqrtge0 | |- ( ( A e. RR /\ 0 <_ A ) -> 0 <_ ( sqrt ` A ) ) |
|
| 8 | 4 7 | syldan | |- ( ( A e. RR /\ 0 < A ) -> 0 <_ ( sqrt ` A ) ) |
| 9 | gt0ne0 | |- ( ( A e. RR /\ 0 < A ) -> A =/= 0 ) |
|
| 10 | sq0i | |- ( ( sqrt ` A ) = 0 -> ( ( sqrt ` A ) ^ 2 ) = 0 ) |
|
| 11 | resqrtth | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( sqrt ` A ) ^ 2 ) = A ) |
|
| 12 | 4 11 | syldan | |- ( ( A e. RR /\ 0 < A ) -> ( ( sqrt ` A ) ^ 2 ) = A ) |
| 13 | 12 | eqeq1d | |- ( ( A e. RR /\ 0 < A ) -> ( ( ( sqrt ` A ) ^ 2 ) = 0 <-> A = 0 ) ) |
| 14 | 10 13 | imbitrid | |- ( ( A e. RR /\ 0 < A ) -> ( ( sqrt ` A ) = 0 -> A = 0 ) ) |
| 15 | 14 | necon3d | |- ( ( A e. RR /\ 0 < A ) -> ( A =/= 0 -> ( sqrt ` A ) =/= 0 ) ) |
| 16 | 9 15 | mpd | |- ( ( A e. RR /\ 0 < A ) -> ( sqrt ` A ) =/= 0 ) |
| 17 | 6 8 16 | ne0gt0d | |- ( ( A e. RR /\ 0 < A ) -> 0 < ( sqrt ` A ) ) |