This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999) (Revised by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrtmul | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( √ ‘ ( 𝐴 · 𝐵 ) ) = ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 𝐴 ∈ ℝ ) | |
| 2 | simprl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 𝐵 ∈ ℝ ) | |
| 3 | 1 2 | remulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
| 4 | mulge0 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) | |
| 5 | resqrtcl | ⊢ ( ( ( 𝐴 · 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) → ( √ ‘ ( 𝐴 · 𝐵 ) ) ∈ ℝ ) | |
| 6 | 3 4 5 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( √ ‘ ( 𝐴 · 𝐵 ) ) ∈ ℝ ) |
| 7 | resqrtcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ 𝐴 ) ∈ ℝ ) | |
| 8 | 7 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( √ ‘ 𝐴 ) ∈ ℝ ) |
| 9 | resqrtcl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( √ ‘ 𝐵 ) ∈ ℝ ) | |
| 10 | 9 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( √ ‘ 𝐵 ) ∈ ℝ ) |
| 11 | 8 10 | remulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐵 ) ) ∈ ℝ ) |
| 12 | sqrtge0 | ⊢ ( ( ( 𝐴 · 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) → 0 ≤ ( √ ‘ ( 𝐴 · 𝐵 ) ) ) | |
| 13 | 3 4 12 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( √ ‘ ( 𝐴 · 𝐵 ) ) ) |
| 14 | sqrtge0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 0 ≤ ( √ ‘ 𝐴 ) ) | |
| 15 | 14 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( √ ‘ 𝐴 ) ) |
| 16 | sqrtge0 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → 0 ≤ ( √ ‘ 𝐵 ) ) | |
| 17 | 16 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( √ ‘ 𝐵 ) ) |
| 18 | 8 10 15 17 | mulge0d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐵 ) ) ) |
| 19 | resqrtth | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) | |
| 20 | resqrtth | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( ( √ ‘ 𝐵 ) ↑ 2 ) = 𝐵 ) | |
| 21 | 19 20 | oveqan12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( ( √ ‘ 𝐴 ) ↑ 2 ) · ( ( √ ‘ 𝐵 ) ↑ 2 ) ) = ( 𝐴 · 𝐵 ) ) |
| 22 | 8 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( √ ‘ 𝐴 ) ∈ ℂ ) |
| 23 | 10 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( √ ‘ 𝐵 ) ∈ ℂ ) |
| 24 | 22 23 | sqmuld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐵 ) ) ↑ 2 ) = ( ( ( √ ‘ 𝐴 ) ↑ 2 ) · ( ( √ ‘ 𝐵 ) ↑ 2 ) ) ) |
| 25 | resqrtth | ⊢ ( ( ( 𝐴 · 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) → ( ( √ ‘ ( 𝐴 · 𝐵 ) ) ↑ 2 ) = ( 𝐴 · 𝐵 ) ) | |
| 26 | 3 4 25 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( √ ‘ ( 𝐴 · 𝐵 ) ) ↑ 2 ) = ( 𝐴 · 𝐵 ) ) |
| 27 | 21 24 26 | 3eqtr4rd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( √ ‘ ( 𝐴 · 𝐵 ) ) ↑ 2 ) = ( ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐵 ) ) ↑ 2 ) ) |
| 28 | 6 11 13 18 27 | sq11d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( √ ‘ ( 𝐴 · 𝐵 ) ) = ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐵 ) ) ) |