This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subspace sum of a closed subspace and a one-dimensional subspace equals their join. (Proof suggested by Eric Schechter 1-Jun-2004.) (Contributed by NM, 1-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spansnj.1 | ⊢ 𝐴 ∈ Cℋ | |
| spansnj.2 | ⊢ 𝐵 ∈ ℋ | ||
| Assertion | spansnji | ⊢ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) = ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spansnj.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | spansnj.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | 1 | chshii | ⊢ 𝐴 ∈ Sℋ |
| 4 | 2 | spansnchi | ⊢ ( span ‘ { 𝐵 } ) ∈ Cℋ |
| 5 | 4 | chshii | ⊢ ( span ‘ { 𝐵 } ) ∈ Sℋ |
| 6 | 3 5 | shjshsi | ⊢ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) ) |
| 7 | 1 | chssii | ⊢ 𝐴 ⊆ ℋ |
| 8 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 9 | 8 2 | pjhclii | ⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ∈ ℋ |
| 10 | snssi | ⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ∈ ℋ → { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ⊆ ℋ ) | |
| 11 | 9 10 | ax-mp | ⊢ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ⊆ ℋ |
| 12 | 7 11 | spanuni | ⊢ ( span ‘ ( 𝐴 ∪ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) = ( ( span ‘ 𝐴 ) +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
| 13 | spanid | ⊢ ( 𝐴 ∈ Sℋ → ( span ‘ 𝐴 ) = 𝐴 ) | |
| 14 | 3 13 | ax-mp | ⊢ ( span ‘ 𝐴 ) = 𝐴 |
| 15 | 14 | oveq1i | ⊢ ( ( span ‘ 𝐴 ) +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) = ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
| 16 | 7 2 | spansnpji | ⊢ 𝐴 ⊆ ( ⊥ ‘ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
| 17 | 9 | spansnchi | ⊢ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ∈ Cℋ |
| 18 | 1 17 | osumi | ⊢ ( 𝐴 ⊆ ( ⊥ ‘ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) → ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) = ( 𝐴 ∨ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) |
| 19 | 16 18 | ax-mp | ⊢ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) = ( 𝐴 ∨ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
| 20 | 12 15 19 | 3eqtrri | ⊢ ( 𝐴 ∨ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) = ( span ‘ ( 𝐴 ∪ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
| 21 | 1 2 | spanunsni | ⊢ ( span ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( span ‘ ( 𝐴 ∪ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
| 22 | 20 21 | eqtr4i | ⊢ ( 𝐴 ∨ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) = ( span ‘ ( 𝐴 ∪ { 𝐵 } ) ) |
| 23 | snssi | ⊢ ( 𝐵 ∈ ℋ → { 𝐵 } ⊆ ℋ ) | |
| 24 | 2 23 | ax-mp | ⊢ { 𝐵 } ⊆ ℋ |
| 25 | 7 24 | spanuni | ⊢ ( span ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( span ‘ 𝐴 ) +ℋ ( span ‘ { 𝐵 } ) ) |
| 26 | 14 | oveq1i | ⊢ ( ( span ‘ 𝐴 ) +ℋ ( span ‘ { 𝐵 } ) ) = ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) |
| 27 | 22 25 26 | 3eqtrri | ⊢ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) = ( 𝐴 ∨ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
| 28 | 1 17 | chjcli | ⊢ ( 𝐴 ∨ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ∈ Cℋ |
| 29 | 27 28 | eqeltri | ⊢ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ∈ Cℋ |
| 30 | 29 | ococi | ⊢ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) ) = ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) |
| 31 | 6 30 | eqtr2i | ⊢ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) = ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) |