This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subspace sum of a closed subspace and a one-dimensional subspace equals their join. (Contributed by NM, 4-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spansnj | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) = ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ ( span ‘ { 𝐵 } ) ) ) | |
| 2 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { 𝐵 } ) ) ) | |
| 3 | 1 2 | eqeq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) = ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ ( span ‘ { 𝐵 } ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { 𝐵 } ) ) ) ) |
| 4 | sneq | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → { 𝐵 } = { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) | |
| 5 | 4 | fveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( span ‘ { 𝐵 } ) = ( span ‘ { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) ) |
| 6 | 5 | oveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ ( span ‘ { 𝐵 } ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ ( span ‘ { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) ) ) |
| 7 | 5 | oveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { 𝐵 } ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) ) ) |
| 8 | 6 7 | eqeq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ ( span ‘ { 𝐵 } ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { 𝐵 } ) ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ ( span ‘ { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) ) ) ) |
| 9 | ifchhv | ⊢ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∈ Cℋ | |
| 10 | ifhvhv0 | ⊢ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ∈ ℋ | |
| 11 | 9 10 | spansnji | ⊢ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ ( span ‘ { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) ) |
| 12 | 3 8 11 | dedth2h | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) = ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) |