This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subspace sum of a closed subspace and a one-dimensional subspace equals their join. (Proof suggested by Eric Schechter 1-Jun-2004.) (Contributed by NM, 1-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spansnj.1 | |- A e. CH |
|
| spansnj.2 | |- B e. ~H |
||
| Assertion | spansnji | |- ( A +H ( span ` { B } ) ) = ( A vH ( span ` { B } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spansnj.1 | |- A e. CH |
|
| 2 | spansnj.2 | |- B e. ~H |
|
| 3 | 1 | chshii | |- A e. SH |
| 4 | 2 | spansnchi | |- ( span ` { B } ) e. CH |
| 5 | 4 | chshii | |- ( span ` { B } ) e. SH |
| 6 | 3 5 | shjshsi | |- ( A vH ( span ` { B } ) ) = ( _|_ ` ( _|_ ` ( A +H ( span ` { B } ) ) ) ) |
| 7 | 1 | chssii | |- A C_ ~H |
| 8 | 1 | choccli | |- ( _|_ ` A ) e. CH |
| 9 | 8 2 | pjhclii | |- ( ( projh ` ( _|_ ` A ) ) ` B ) e. ~H |
| 10 | snssi | |- ( ( ( projh ` ( _|_ ` A ) ) ` B ) e. ~H -> { ( ( projh ` ( _|_ ` A ) ) ` B ) } C_ ~H ) |
|
| 11 | 9 10 | ax-mp | |- { ( ( projh ` ( _|_ ` A ) ) ` B ) } C_ ~H |
| 12 | 7 11 | spanuni | |- ( span ` ( A u. { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) = ( ( span ` A ) +H ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) |
| 13 | spanid | |- ( A e. SH -> ( span ` A ) = A ) |
|
| 14 | 3 13 | ax-mp | |- ( span ` A ) = A |
| 15 | 14 | oveq1i | |- ( ( span ` A ) +H ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) = ( A +H ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) |
| 16 | 7 2 | spansnpji | |- A C_ ( _|_ ` ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) |
| 17 | 9 | spansnchi | |- ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) e. CH |
| 18 | 1 17 | osumi | |- ( A C_ ( _|_ ` ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) -> ( A +H ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) = ( A vH ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) ) |
| 19 | 16 18 | ax-mp | |- ( A +H ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) = ( A vH ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) |
| 20 | 12 15 19 | 3eqtrri | |- ( A vH ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) = ( span ` ( A u. { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) |
| 21 | 1 2 | spanunsni | |- ( span ` ( A u. { B } ) ) = ( span ` ( A u. { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) |
| 22 | 20 21 | eqtr4i | |- ( A vH ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) = ( span ` ( A u. { B } ) ) |
| 23 | snssi | |- ( B e. ~H -> { B } C_ ~H ) |
|
| 24 | 2 23 | ax-mp | |- { B } C_ ~H |
| 25 | 7 24 | spanuni | |- ( span ` ( A u. { B } ) ) = ( ( span ` A ) +H ( span ` { B } ) ) |
| 26 | 14 | oveq1i | |- ( ( span ` A ) +H ( span ` { B } ) ) = ( A +H ( span ` { B } ) ) |
| 27 | 22 25 26 | 3eqtrri | |- ( A +H ( span ` { B } ) ) = ( A vH ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) |
| 28 | 1 17 | chjcli | |- ( A vH ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) e. CH |
| 29 | 27 28 | eqeltri | |- ( A +H ( span ` { B } ) ) e. CH |
| 30 | 29 | ococi | |- ( _|_ ` ( _|_ ` ( A +H ( span ` { B } ) ) ) ) = ( A +H ( span ` { B } ) ) |
| 31 | 6 30 | eqtr2i | |- ( A +H ( span ` { B } ) ) = ( A vH ( span ` { B } ) ) |