This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert lattice join equals the double orthocomplement of subspace sum. (Contributed by NM, 27-Nov-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shjshs.1 | ⊢ 𝐴 ∈ Sℋ | |
| shjshs.2 | ⊢ 𝐵 ∈ Sℋ | ||
| Assertion | shjshsi | ⊢ ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shjshs.1 | ⊢ 𝐴 ∈ Sℋ | |
| 2 | shjshs.2 | ⊢ 𝐵 ∈ Sℋ | |
| 3 | shjval | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 5 | 1 2 | shunssi | ⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) |
| 6 | 1 | shssii | ⊢ 𝐴 ⊆ ℋ |
| 7 | 2 | shssii | ⊢ 𝐵 ⊆ ℋ |
| 8 | 6 7 | unssi | ⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ℋ |
| 9 | 1 2 | shscli | ⊢ ( 𝐴 +ℋ 𝐵 ) ∈ Sℋ |
| 10 | 9 | shssii | ⊢ ( 𝐴 +ℋ 𝐵 ) ⊆ ℋ |
| 11 | 8 10 | occon2i | ⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ) ) |
| 12 | 5 11 | ax-mp | ⊢ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ) |
| 13 | 4 12 | eqsstri | ⊢ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ) |
| 14 | 1 2 | shsleji | ⊢ ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
| 15 | 1 2 | shjcli | ⊢ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ |
| 16 | 15 | chssii | ⊢ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ℋ |
| 17 | occon | ⊢ ( ( ( 𝐴 +ℋ 𝐵 ) ⊆ ℋ ∧ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ℋ ) → ( ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) → ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ) ) | |
| 18 | 10 16 17 | mp2an | ⊢ ( ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) → ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ) |
| 19 | 14 18 | ax-mp | ⊢ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) |
| 20 | occl | ⊢ ( ( 𝐴 +ℋ 𝐵 ) ⊆ ℋ → ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ∈ Cℋ ) | |
| 21 | 10 20 | ax-mp | ⊢ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ∈ Cℋ |
| 22 | 15 21 | chsscon1i | ⊢ ( ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ↔ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |
| 23 | 19 22 | mpbi | ⊢ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
| 24 | 13 23 | eqssi | ⊢ ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ) |