This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership relation that implies equality of spans. (Contributed by NM, 6-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spansneleq | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 𝐴 ∈ ( span ‘ { 𝐵 } ) → ( span ‘ { 𝐴 } ) = ( span ‘ { 𝐵 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elspansn | ⊢ ( 𝐵 ∈ ℋ → ( 𝐴 ∈ ( span ‘ { 𝐵 } ) ↔ ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 𝐴 ∈ ( span ‘ { 𝐵 } ) ↔ ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) ) |
| 3 | sneq | ⊢ ( 𝐴 = ( 𝑥 ·ℎ 𝐵 ) → { 𝐴 } = { ( 𝑥 ·ℎ 𝐵 ) } ) | |
| 4 | 3 | fveq2d | ⊢ ( 𝐴 = ( 𝑥 ·ℎ 𝐵 ) → ( span ‘ { 𝐴 } ) = ( span ‘ { ( 𝑥 ·ℎ 𝐵 ) } ) ) |
| 5 | 4 | ad2antll | ⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) ) → ( span ‘ { 𝐴 } ) = ( span ‘ { ( 𝑥 ·ℎ 𝐵 ) } ) ) |
| 6 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 ·ℎ 𝐵 ) = ( 0 ·ℎ 𝐵 ) ) | |
| 7 | ax-hvmul0 | ⊢ ( 𝐵 ∈ ℋ → ( 0 ·ℎ 𝐵 ) = 0ℎ ) | |
| 8 | 6 7 | sylan9eqr | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝑥 = 0 ) → ( 𝑥 ·ℎ 𝐵 ) = 0ℎ ) |
| 9 | 8 | ex | ⊢ ( 𝐵 ∈ ℋ → ( 𝑥 = 0 → ( 𝑥 ·ℎ 𝐵 ) = 0ℎ ) ) |
| 10 | eqeq1 | ⊢ ( 𝐴 = ( 𝑥 ·ℎ 𝐵 ) → ( 𝐴 = 0ℎ ↔ ( 𝑥 ·ℎ 𝐵 ) = 0ℎ ) ) | |
| 11 | 10 | biimprd | ⊢ ( 𝐴 = ( 𝑥 ·ℎ 𝐵 ) → ( ( 𝑥 ·ℎ 𝐵 ) = 0ℎ → 𝐴 = 0ℎ ) ) |
| 12 | 9 11 | sylan9 | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) → ( 𝑥 = 0 → 𝐴 = 0ℎ ) ) |
| 13 | 12 | necon3d | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) → ( 𝐴 ≠ 0ℎ → 𝑥 ≠ 0 ) ) |
| 14 | 13 | ex | ⊢ ( 𝐵 ∈ ℋ → ( 𝐴 = ( 𝑥 ·ℎ 𝐵 ) → ( 𝐴 ≠ 0ℎ → 𝑥 ≠ 0 ) ) ) |
| 15 | 14 | com23 | ⊢ ( 𝐵 ∈ ℋ → ( 𝐴 ≠ 0ℎ → ( 𝐴 = ( 𝑥 ·ℎ 𝐵 ) → 𝑥 ≠ 0 ) ) ) |
| 16 | 15 | impd | ⊢ ( 𝐵 ∈ ℋ → ( ( 𝐴 ≠ 0ℎ ∧ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) → 𝑥 ≠ 0 ) ) |
| 17 | 16 | adantr | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℂ ) → ( ( 𝐴 ≠ 0ℎ ∧ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) → 𝑥 ≠ 0 ) ) |
| 18 | spansncol | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → ( span ‘ { ( 𝑥 ·ℎ 𝐵 ) } ) = ( span ‘ { 𝐵 } ) ) | |
| 19 | 18 | 3expia | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ≠ 0 → ( span ‘ { ( 𝑥 ·ℎ 𝐵 ) } ) = ( span ‘ { 𝐵 } ) ) ) |
| 20 | 17 19 | syld | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℂ ) → ( ( 𝐴 ≠ 0ℎ ∧ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) → ( span ‘ { ( 𝑥 ·ℎ 𝐵 ) } ) = ( span ‘ { 𝐵 } ) ) ) |
| 21 | 20 | exp4b | ⊢ ( 𝐵 ∈ ℋ → ( 𝑥 ∈ ℂ → ( 𝐴 ≠ 0ℎ → ( 𝐴 = ( 𝑥 ·ℎ 𝐵 ) → ( span ‘ { ( 𝑥 ·ℎ 𝐵 ) } ) = ( span ‘ { 𝐵 } ) ) ) ) ) |
| 22 | 21 | com23 | ⊢ ( 𝐵 ∈ ℋ → ( 𝐴 ≠ 0ℎ → ( 𝑥 ∈ ℂ → ( 𝐴 = ( 𝑥 ·ℎ 𝐵 ) → ( span ‘ { ( 𝑥 ·ℎ 𝐵 ) } ) = ( span ‘ { 𝐵 } ) ) ) ) ) |
| 23 | 22 | imp43 | ⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) ) → ( span ‘ { ( 𝑥 ·ℎ 𝐵 ) } ) = ( span ‘ { 𝐵 } ) ) |
| 24 | 5 23 | eqtrd | ⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) ) → ( span ‘ { 𝐴 } ) = ( span ‘ { 𝐵 } ) ) |
| 25 | 24 | rexlimdvaa | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) → ( span ‘ { 𝐴 } ) = ( span ‘ { 𝐵 } ) ) ) |
| 26 | 2 25 | sylbid | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 𝐴 ∈ ( span ‘ { 𝐵 } ) → ( span ‘ { 𝐴 } ) = ( span ‘ { 𝐵 } ) ) ) |