This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert space has the covering property (using spans of singletons to represent atoms). Exercise 5 of Kalmbach p. 153. (Contributed by NM, 9-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spansncv | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ) → 𝐵 = ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psseq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( 𝐴 ⊊ 𝐵 ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊊ 𝐵 ) ) | |
| 2 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { 𝐶 } ) ) ) | |
| 3 | 2 | sseq2d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ↔ 𝐵 ⊆ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { 𝐶 } ) ) ) ) |
| 4 | 1 3 | anbi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ( 𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊊ 𝐵 ∧ 𝐵 ⊆ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { 𝐶 } ) ) ) ) ) |
| 5 | 2 | eqeq2d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( 𝐵 = ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ↔ 𝐵 = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { 𝐶 } ) ) ) ) |
| 6 | 4 5 | imbi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ( ( 𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ) → 𝐵 = ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ) ↔ ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊊ 𝐵 ∧ 𝐵 ⊆ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { 𝐶 } ) ) ) → 𝐵 = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { 𝐶 } ) ) ) ) ) |
| 7 | psseq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊊ 𝐵 ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊊ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) | |
| 8 | sseq1 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( 𝐵 ⊆ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { 𝐶 } ) ) ↔ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ⊆ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { 𝐶 } ) ) ) ) | |
| 9 | 7 8 | anbi12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊊ 𝐵 ∧ 𝐵 ⊆ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { 𝐶 } ) ) ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊊ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ∧ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ⊆ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { 𝐶 } ) ) ) ) ) |
| 10 | eqeq1 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( 𝐵 = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { 𝐶 } ) ) ↔ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { 𝐶 } ) ) ) ) | |
| 11 | 9 10 | imbi12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊊ 𝐵 ∧ 𝐵 ⊆ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { 𝐶 } ) ) ) → 𝐵 = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { 𝐶 } ) ) ) ↔ ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊊ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ∧ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ⊆ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { 𝐶 } ) ) ) → if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { 𝐶 } ) ) ) ) ) |
| 12 | sneq | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) → { 𝐶 } = { if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) } ) | |
| 13 | 12 | fveq2d | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) → ( span ‘ { 𝐶 } ) = ( span ‘ { if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) } ) ) |
| 14 | 13 | oveq2d | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { 𝐶 } ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) } ) ) ) |
| 15 | 14 | sseq2d | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) → ( if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ⊆ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { 𝐶 } ) ) ↔ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ⊆ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) } ) ) ) ) |
| 16 | 15 | anbi2d | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) → ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊊ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ∧ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ⊆ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { 𝐶 } ) ) ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊊ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ∧ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ⊆ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) } ) ) ) ) ) |
| 17 | 14 | eqeq2d | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) → ( if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { 𝐶 } ) ) ↔ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) } ) ) ) ) |
| 18 | 16 17 | imbi12d | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) → ( ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊊ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ∧ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ⊆ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { 𝐶 } ) ) ) → if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { 𝐶 } ) ) ) ↔ ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊊ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ∧ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ⊆ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) } ) ) ) → if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) } ) ) ) ) ) |
| 19 | ifchhv | ⊢ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∈ Cℋ | |
| 20 | ifchhv | ⊢ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ∈ Cℋ | |
| 21 | ifhvhv0 | ⊢ if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ∈ ℋ | |
| 22 | 19 20 21 | spansncvi | ⊢ ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊊ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ∧ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ⊆ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) } ) ) ) → if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) } ) ) ) |
| 23 | 6 11 18 22 | dedth3h | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ) → 𝐵 = ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ) ) |