This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton { A } is never equinumerous with the ordinal number 2. This holds for proper singletons ( A e.V ) as well as for singletons being the empty set ( A e/ V ). (Contributed by AV, 6-Aug-2019) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 1-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snnen2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o3 | ||
| 2 | 0ex | ||
| 3 | 1oex | ||
| 4 | 1n0 | ||
| 5 | 4 | necomi | |
| 6 | prnesn | ||
| 7 | 2 3 5 6 | mp3an | |
| 8 | 1 7 | eqnetri | |
| 9 | 8 | neii | |
| 10 | 9 | nex | |
| 11 | 2on0 | ||
| 12 | f1cdmsn | ||
| 13 | 11 12 | mpan2 | |
| 14 | 10 13 | mto | |
| 15 | f1ocnv | ||
| 16 | f1of1 | ||
| 17 | 15 16 | syl | |
| 18 | 14 17 | mto | |
| 19 | 18 | nex | |
| 20 | snex | ||
| 21 | 2oex | ||
| 22 | breng | ||
| 23 | 20 21 22 | mp2an | |
| 24 | 19 23 | mtbir |