This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A proper unordered pair is not a (proper or improper) singleton. (Contributed by AV, 13-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prnesn | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ≠ { 𝐶 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3 | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) → 𝐴 = 𝐵 ) | |
| 2 | 1 | necon3ai | ⊢ ( 𝐴 ≠ 𝐵 → ¬ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) |
| 3 | 2 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ¬ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) |
| 4 | simp1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ 𝑉 ) | |
| 5 | simp2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ 𝑊 ) | |
| 6 | 4 5 | preqsnd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } = { 𝐶 } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) ) |
| 7 | 6 | necon3abid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } ≠ { 𝐶 } ↔ ¬ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) ) |
| 8 | 3 7 | mpbird | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ≠ { 𝐶 } ) |