This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The singleton of an atom is a projective subspace. (Contributed by NM, 9-Sep-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | snpsub.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| snpsub.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | ||
| Assertion | snatpsubN | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → { 𝑃 } ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snpsub.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 2 | snpsub.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | |
| 3 | snssi | ⊢ ( 𝑃 ∈ 𝐴 → { 𝑃 } ⊆ 𝐴 ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → { 𝑃 } ⊆ 𝐴 ) |
| 5 | atllat | ⊢ ( 𝐾 ∈ AtLat → 𝐾 ∈ Lat ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 7 | 6 1 | atbase | ⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 8 | eqid | ⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) | |
| 9 | 6 8 | latjidm | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) = 𝑃 ) |
| 10 | 5 7 9 | syl2an | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) = 𝑃 ) |
| 11 | 10 | adantr | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑟 ∈ 𝐴 ) → ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) = 𝑃 ) |
| 12 | 11 | breq2d | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑟 ∈ 𝐴 ) → ( 𝑟 ( le ‘ 𝐾 ) ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) ↔ 𝑟 ( le ‘ 𝐾 ) 𝑃 ) ) |
| 13 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 14 | 13 1 | atcmp | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑟 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑟 ( le ‘ 𝐾 ) 𝑃 ↔ 𝑟 = 𝑃 ) ) |
| 15 | 14 | 3com23 | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) → ( 𝑟 ( le ‘ 𝐾 ) 𝑃 ↔ 𝑟 = 𝑃 ) ) |
| 16 | 15 | 3expa | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑟 ∈ 𝐴 ) → ( 𝑟 ( le ‘ 𝐾 ) 𝑃 ↔ 𝑟 = 𝑃 ) ) |
| 17 | 16 | biimpd | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑟 ∈ 𝐴 ) → ( 𝑟 ( le ‘ 𝐾 ) 𝑃 → 𝑟 = 𝑃 ) ) |
| 18 | 12 17 | sylbid | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑟 ∈ 𝐴 ) → ( 𝑟 ( le ‘ 𝐾 ) ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) → 𝑟 = 𝑃 ) ) |
| 19 | 18 | adantld | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑟 ∈ 𝐴 ) → ( ( ( 𝑝 = 𝑃 ∧ 𝑞 = 𝑃 ) ∧ 𝑟 ( le ‘ 𝐾 ) ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) ) → 𝑟 = 𝑃 ) ) |
| 20 | velsn | ⊢ ( 𝑝 ∈ { 𝑃 } ↔ 𝑝 = 𝑃 ) | |
| 21 | velsn | ⊢ ( 𝑞 ∈ { 𝑃 } ↔ 𝑞 = 𝑃 ) | |
| 22 | 20 21 | anbi12i | ⊢ ( ( 𝑝 ∈ { 𝑃 } ∧ 𝑞 ∈ { 𝑃 } ) ↔ ( 𝑝 = 𝑃 ∧ 𝑞 = 𝑃 ) ) |
| 23 | 22 | anbi1i | ⊢ ( ( ( 𝑝 ∈ { 𝑃 } ∧ 𝑞 ∈ { 𝑃 } ) ∧ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) ↔ ( ( 𝑝 = 𝑃 ∧ 𝑞 = 𝑃 ) ∧ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) ) |
| 24 | oveq12 | ⊢ ( ( 𝑝 = 𝑃 ∧ 𝑞 = 𝑃 ) → ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) = ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) ) | |
| 25 | 24 | breq2d | ⊢ ( ( 𝑝 = 𝑃 ∧ 𝑞 = 𝑃 ) → ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ↔ 𝑟 ( le ‘ 𝐾 ) ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) ) ) |
| 26 | 25 | pm5.32i | ⊢ ( ( ( 𝑝 = 𝑃 ∧ 𝑞 = 𝑃 ) ∧ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) ↔ ( ( 𝑝 = 𝑃 ∧ 𝑞 = 𝑃 ) ∧ 𝑟 ( le ‘ 𝐾 ) ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) ) ) |
| 27 | 23 26 | bitri | ⊢ ( ( ( 𝑝 ∈ { 𝑃 } ∧ 𝑞 ∈ { 𝑃 } ) ∧ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) ↔ ( ( 𝑝 = 𝑃 ∧ 𝑞 = 𝑃 ) ∧ 𝑟 ( le ‘ 𝐾 ) ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) ) ) |
| 28 | velsn | ⊢ ( 𝑟 ∈ { 𝑃 } ↔ 𝑟 = 𝑃 ) | |
| 29 | 19 27 28 | 3imtr4g | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑟 ∈ 𝐴 ) → ( ( ( 𝑝 ∈ { 𝑃 } ∧ 𝑞 ∈ { 𝑃 } ) ∧ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) → 𝑟 ∈ { 𝑃 } ) ) |
| 30 | 29 | exp4b | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → ( 𝑟 ∈ 𝐴 → ( ( 𝑝 ∈ { 𝑃 } ∧ 𝑞 ∈ { 𝑃 } ) → ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ { 𝑃 } ) ) ) ) |
| 31 | 30 | com23 | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑝 ∈ { 𝑃 } ∧ 𝑞 ∈ { 𝑃 } ) → ( 𝑟 ∈ 𝐴 → ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ { 𝑃 } ) ) ) ) |
| 32 | 31 | ralrimdv | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑝 ∈ { 𝑃 } ∧ 𝑞 ∈ { 𝑃 } ) → ∀ 𝑟 ∈ 𝐴 ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ { 𝑃 } ) ) ) |
| 33 | 32 | ralrimivv | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → ∀ 𝑝 ∈ { 𝑃 } ∀ 𝑞 ∈ { 𝑃 } ∀ 𝑟 ∈ 𝐴 ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ { 𝑃 } ) ) |
| 34 | 4 33 | jca | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → ( { 𝑃 } ⊆ 𝐴 ∧ ∀ 𝑝 ∈ { 𝑃 } ∀ 𝑞 ∈ { 𝑃 } ∀ 𝑟 ∈ 𝐴 ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ { 𝑃 } ) ) ) |
| 35 | 34 | ex | ⊢ ( 𝐾 ∈ AtLat → ( 𝑃 ∈ 𝐴 → ( { 𝑃 } ⊆ 𝐴 ∧ ∀ 𝑝 ∈ { 𝑃 } ∀ 𝑞 ∈ { 𝑃 } ∀ 𝑟 ∈ 𝐴 ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ { 𝑃 } ) ) ) ) |
| 36 | 13 8 1 2 | ispsubsp | ⊢ ( 𝐾 ∈ AtLat → ( { 𝑃 } ∈ 𝑆 ↔ ( { 𝑃 } ⊆ 𝐴 ∧ ∀ 𝑝 ∈ { 𝑃 } ∀ 𝑞 ∈ { 𝑃 } ∀ 𝑟 ∈ 𝐴 ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ { 𝑃 } ) ) ) ) |
| 37 | 35 36 | sylibrd | ⊢ ( 𝐾 ∈ AtLat → ( 𝑃 ∈ 𝐴 → { 𝑃 } ∈ 𝑆 ) ) |
| 38 | 37 | imp | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → { 𝑃 } ∈ 𝑆 ) |