This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a projective subspace". (Contributed by NM, 2-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psubspset.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| psubspset.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| psubspset.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| psubspset.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | ||
| Assertion | ispsubsp | ⊢ ( 𝐾 ∈ 𝐷 → ( 𝑋 ∈ 𝑆 ↔ ( 𝑋 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝑋 ∀ 𝑞 ∈ 𝑋 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑋 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psubspset.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | psubspset.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | psubspset.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | psubspset.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | |
| 5 | 1 2 3 4 | psubspset | ⊢ ( 𝐾 ∈ 𝐷 → 𝑆 = { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝑥 ∀ 𝑞 ∈ 𝑥 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑥 ) ) } ) |
| 6 | 5 | eleq2d | ⊢ ( 𝐾 ∈ 𝐷 → ( 𝑋 ∈ 𝑆 ↔ 𝑋 ∈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝑥 ∀ 𝑞 ∈ 𝑥 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑥 ) ) } ) ) |
| 7 | 3 | fvexi | ⊢ 𝐴 ∈ V |
| 8 | 7 | ssex | ⊢ ( 𝑋 ⊆ 𝐴 → 𝑋 ∈ V ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑋 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝑋 ∀ 𝑞 ∈ 𝑋 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑋 ) ) → 𝑋 ∈ V ) |
| 10 | sseq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ⊆ 𝐴 ↔ 𝑋 ⊆ 𝐴 ) ) | |
| 11 | eleq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝑟 ∈ 𝑥 ↔ 𝑟 ∈ 𝑋 ) ) | |
| 12 | 11 | imbi2d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑥 ) ↔ ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑋 ) ) ) |
| 13 | 12 | ralbidv | ⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑥 ) ↔ ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑋 ) ) ) |
| 14 | 13 | raleqbi1dv | ⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑞 ∈ 𝑥 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑥 ) ↔ ∀ 𝑞 ∈ 𝑋 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑋 ) ) ) |
| 15 | 14 | raleqbi1dv | ⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑝 ∈ 𝑥 ∀ 𝑞 ∈ 𝑥 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑥 ) ↔ ∀ 𝑝 ∈ 𝑋 ∀ 𝑞 ∈ 𝑋 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑋 ) ) ) |
| 16 | 10 15 | anbi12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝑥 ∀ 𝑞 ∈ 𝑥 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑥 ) ) ↔ ( 𝑋 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝑋 ∀ 𝑞 ∈ 𝑋 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑋 ) ) ) ) |
| 17 | 9 16 | elab3 | ⊢ ( 𝑋 ∈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝑥 ∀ 𝑞 ∈ 𝑥 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑥 ) ) } ↔ ( 𝑋 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝑋 ∀ 𝑞 ∈ 𝑋 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑋 ) ) ) |
| 18 | 6 17 | bitrdi | ⊢ ( 𝐾 ∈ 𝐷 → ( 𝑋 ∈ 𝑆 ↔ ( 𝑋 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝑋 ∀ 𝑞 ∈ 𝑋 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑋 ) ) ) ) |