This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The singleton of an atom is a projective subspace. (Contributed by NM, 9-Sep-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | snpsub.a | |- A = ( Atoms ` K ) |
|
| snpsub.s | |- S = ( PSubSp ` K ) |
||
| Assertion | snatpsubN | |- ( ( K e. AtLat /\ P e. A ) -> { P } e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snpsub.a | |- A = ( Atoms ` K ) |
|
| 2 | snpsub.s | |- S = ( PSubSp ` K ) |
|
| 3 | snssi | |- ( P e. A -> { P } C_ A ) |
|
| 4 | 3 | adantl | |- ( ( K e. AtLat /\ P e. A ) -> { P } C_ A ) |
| 5 | atllat | |- ( K e. AtLat -> K e. Lat ) |
|
| 6 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 7 | 6 1 | atbase | |- ( P e. A -> P e. ( Base ` K ) ) |
| 8 | eqid | |- ( join ` K ) = ( join ` K ) |
|
| 9 | 6 8 | latjidm | |- ( ( K e. Lat /\ P e. ( Base ` K ) ) -> ( P ( join ` K ) P ) = P ) |
| 10 | 5 7 9 | syl2an | |- ( ( K e. AtLat /\ P e. A ) -> ( P ( join ` K ) P ) = P ) |
| 11 | 10 | adantr | |- ( ( ( K e. AtLat /\ P e. A ) /\ r e. A ) -> ( P ( join ` K ) P ) = P ) |
| 12 | 11 | breq2d | |- ( ( ( K e. AtLat /\ P e. A ) /\ r e. A ) -> ( r ( le ` K ) ( P ( join ` K ) P ) <-> r ( le ` K ) P ) ) |
| 13 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 14 | 13 1 | atcmp | |- ( ( K e. AtLat /\ r e. A /\ P e. A ) -> ( r ( le ` K ) P <-> r = P ) ) |
| 15 | 14 | 3com23 | |- ( ( K e. AtLat /\ P e. A /\ r e. A ) -> ( r ( le ` K ) P <-> r = P ) ) |
| 16 | 15 | 3expa | |- ( ( ( K e. AtLat /\ P e. A ) /\ r e. A ) -> ( r ( le ` K ) P <-> r = P ) ) |
| 17 | 16 | biimpd | |- ( ( ( K e. AtLat /\ P e. A ) /\ r e. A ) -> ( r ( le ` K ) P -> r = P ) ) |
| 18 | 12 17 | sylbid | |- ( ( ( K e. AtLat /\ P e. A ) /\ r e. A ) -> ( r ( le ` K ) ( P ( join ` K ) P ) -> r = P ) ) |
| 19 | 18 | adantld | |- ( ( ( K e. AtLat /\ P e. A ) /\ r e. A ) -> ( ( ( p = P /\ q = P ) /\ r ( le ` K ) ( P ( join ` K ) P ) ) -> r = P ) ) |
| 20 | velsn | |- ( p e. { P } <-> p = P ) |
|
| 21 | velsn | |- ( q e. { P } <-> q = P ) |
|
| 22 | 20 21 | anbi12i | |- ( ( p e. { P } /\ q e. { P } ) <-> ( p = P /\ q = P ) ) |
| 23 | 22 | anbi1i | |- ( ( ( p e. { P } /\ q e. { P } ) /\ r ( le ` K ) ( p ( join ` K ) q ) ) <-> ( ( p = P /\ q = P ) /\ r ( le ` K ) ( p ( join ` K ) q ) ) ) |
| 24 | oveq12 | |- ( ( p = P /\ q = P ) -> ( p ( join ` K ) q ) = ( P ( join ` K ) P ) ) |
|
| 25 | 24 | breq2d | |- ( ( p = P /\ q = P ) -> ( r ( le ` K ) ( p ( join ` K ) q ) <-> r ( le ` K ) ( P ( join ` K ) P ) ) ) |
| 26 | 25 | pm5.32i | |- ( ( ( p = P /\ q = P ) /\ r ( le ` K ) ( p ( join ` K ) q ) ) <-> ( ( p = P /\ q = P ) /\ r ( le ` K ) ( P ( join ` K ) P ) ) ) |
| 27 | 23 26 | bitri | |- ( ( ( p e. { P } /\ q e. { P } ) /\ r ( le ` K ) ( p ( join ` K ) q ) ) <-> ( ( p = P /\ q = P ) /\ r ( le ` K ) ( P ( join ` K ) P ) ) ) |
| 28 | velsn | |- ( r e. { P } <-> r = P ) |
|
| 29 | 19 27 28 | 3imtr4g | |- ( ( ( K e. AtLat /\ P e. A ) /\ r e. A ) -> ( ( ( p e. { P } /\ q e. { P } ) /\ r ( le ` K ) ( p ( join ` K ) q ) ) -> r e. { P } ) ) |
| 30 | 29 | exp4b | |- ( ( K e. AtLat /\ P e. A ) -> ( r e. A -> ( ( p e. { P } /\ q e. { P } ) -> ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. { P } ) ) ) ) |
| 31 | 30 | com23 | |- ( ( K e. AtLat /\ P e. A ) -> ( ( p e. { P } /\ q e. { P } ) -> ( r e. A -> ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. { P } ) ) ) ) |
| 32 | 31 | ralrimdv | |- ( ( K e. AtLat /\ P e. A ) -> ( ( p e. { P } /\ q e. { P } ) -> A. r e. A ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. { P } ) ) ) |
| 33 | 32 | ralrimivv | |- ( ( K e. AtLat /\ P e. A ) -> A. p e. { P } A. q e. { P } A. r e. A ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. { P } ) ) |
| 34 | 4 33 | jca | |- ( ( K e. AtLat /\ P e. A ) -> ( { P } C_ A /\ A. p e. { P } A. q e. { P } A. r e. A ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. { P } ) ) ) |
| 35 | 34 | ex | |- ( K e. AtLat -> ( P e. A -> ( { P } C_ A /\ A. p e. { P } A. q e. { P } A. r e. A ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. { P } ) ) ) ) |
| 36 | 13 8 1 2 | ispsubsp | |- ( K e. AtLat -> ( { P } e. S <-> ( { P } C_ A /\ A. p e. { P } A. q e. { P } A. r e. A ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. { P } ) ) ) ) |
| 37 | 35 36 | sylibrd | |- ( K e. AtLat -> ( P e. A -> { P } e. S ) ) |
| 38 | 37 | imp | |- ( ( K e. AtLat /\ P e. A ) -> { P } e. S ) |