This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A point (singleton of an atom) is a projective subspace. Remark below Definition 15.1 of MaedaMaeda p. 61. (Contributed by NM, 13-Oct-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pointpsub.p | ⊢ 𝑃 = ( Points ‘ 𝐾 ) | |
| pointpsub.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | ||
| Assertion | pointpsubN | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝑃 ) → 𝑋 ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pointpsub.p | ⊢ 𝑃 = ( Points ‘ 𝐾 ) | |
| 2 | pointpsub.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | |
| 3 | eqid | ⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) | |
| 4 | 3 1 | ispointN | ⊢ ( 𝐾 ∈ AtLat → ( 𝑋 ∈ 𝑃 ↔ ∃ 𝑞 ∈ ( Atoms ‘ 𝐾 ) 𝑋 = { 𝑞 } ) ) |
| 5 | 3 2 | snatpsubN | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) → { 𝑞 } ∈ 𝑆 ) |
| 6 | 5 | ex | ⊢ ( 𝐾 ∈ AtLat → ( 𝑞 ∈ ( Atoms ‘ 𝐾 ) → { 𝑞 } ∈ 𝑆 ) ) |
| 7 | eleq1a | ⊢ ( { 𝑞 } ∈ 𝑆 → ( 𝑋 = { 𝑞 } → 𝑋 ∈ 𝑆 ) ) | |
| 8 | 6 7 | syl6 | ⊢ ( 𝐾 ∈ AtLat → ( 𝑞 ∈ ( Atoms ‘ 𝐾 ) → ( 𝑋 = { 𝑞 } → 𝑋 ∈ 𝑆 ) ) ) |
| 9 | 8 | rexlimdv | ⊢ ( 𝐾 ∈ AtLat → ( ∃ 𝑞 ∈ ( Atoms ‘ 𝐾 ) 𝑋 = { 𝑞 } → 𝑋 ∈ 𝑆 ) ) |
| 10 | 4 9 | sylbid | ⊢ ( 𝐾 ∈ AtLat → ( 𝑋 ∈ 𝑃 → 𝑋 ∈ 𝑆 ) ) |
| 11 | 10 | imp | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝑃 ) → 𝑋 ∈ 𝑆 ) |