This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A strictly monotone ordinal function preserves weak ordering. (Contributed by Mario Carneiro, 4-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | smoword | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> ( C C_ D <-> ( F ` C ) C_ ( F ` D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smoord | |- ( ( ( F Fn A /\ Smo F ) /\ ( D e. A /\ C e. A ) ) -> ( D e. C <-> ( F ` D ) e. ( F ` C ) ) ) |
|
| 2 | 1 | notbid | |- ( ( ( F Fn A /\ Smo F ) /\ ( D e. A /\ C e. A ) ) -> ( -. D e. C <-> -. ( F ` D ) e. ( F ` C ) ) ) |
| 3 | 2 | ancom2s | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> ( -. D e. C <-> -. ( F ` D ) e. ( F ` C ) ) ) |
| 4 | smodm2 | |- ( ( F Fn A /\ Smo F ) -> Ord A ) |
|
| 5 | simprl | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> C e. A ) |
|
| 6 | ordelord | |- ( ( Ord A /\ C e. A ) -> Ord C ) |
|
| 7 | 4 5 6 | syl2an2r | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> Ord C ) |
| 8 | simprr | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> D e. A ) |
|
| 9 | ordelord | |- ( ( Ord A /\ D e. A ) -> Ord D ) |
|
| 10 | 4 8 9 | syl2an2r | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> Ord D ) |
| 11 | ordtri1 | |- ( ( Ord C /\ Ord D ) -> ( C C_ D <-> -. D e. C ) ) |
|
| 12 | 7 10 11 | syl2anc | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> ( C C_ D <-> -. D e. C ) ) |
| 13 | simplr | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> Smo F ) |
|
| 14 | smofvon2 | |- ( Smo F -> ( F ` C ) e. On ) |
|
| 15 | eloni | |- ( ( F ` C ) e. On -> Ord ( F ` C ) ) |
|
| 16 | 13 14 15 | 3syl | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> Ord ( F ` C ) ) |
| 17 | smofvon2 | |- ( Smo F -> ( F ` D ) e. On ) |
|
| 18 | eloni | |- ( ( F ` D ) e. On -> Ord ( F ` D ) ) |
|
| 19 | 13 17 18 | 3syl | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> Ord ( F ` D ) ) |
| 20 | ordtri1 | |- ( ( Ord ( F ` C ) /\ Ord ( F ` D ) ) -> ( ( F ` C ) C_ ( F ` D ) <-> -. ( F ` D ) e. ( F ` C ) ) ) |
|
| 21 | 16 19 20 | syl2anc | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> ( ( F ` C ) C_ ( F ` D ) <-> -. ( F ` D ) e. ( F ` C ) ) ) |
| 22 | 3 12 21 | 3bitr4d | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> ( C C_ D <-> ( F ` C ) C_ ( F ` D ) ) ) |