This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication by a constant is continuous. (Contributed by Paul Chapman, 28-Nov-2007) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mulc1cncf.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) | |
| Assertion | mulc1cncf | ⊢ ( 𝐴 ∈ ℂ → 𝐹 ∈ ( ℂ –cn→ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulc1cncf.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) | |
| 2 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝐴 · 𝑥 ) ∈ ℂ ) | |
| 3 | 2 1 | fmptd | ⊢ ( 𝐴 ∈ ℂ → 𝐹 : ℂ ⟶ ℂ ) |
| 4 | simprr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+ ) ) → 𝑧 ∈ ℝ+ ) | |
| 5 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+ ) ) → 𝐴 ∈ ℂ ) | |
| 6 | simprl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+ ) ) → 𝑦 ∈ ℂ ) | |
| 7 | mulcn2 | ⊢ ( ( 𝑧 ∈ ℝ+ ∧ 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ∃ 𝑡 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ ℂ ∀ 𝑢 ∈ ℂ ( ( ( abs ‘ ( 𝑣 − 𝐴 ) ) < 𝑡 ∧ ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑣 · 𝑢 ) − ( 𝐴 · 𝑦 ) ) ) < 𝑧 ) ) | |
| 8 | 4 5 6 7 | syl3anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+ ) ) → ∃ 𝑡 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ ℂ ∀ 𝑢 ∈ ℂ ( ( ( abs ‘ ( 𝑣 − 𝐴 ) ) < 𝑡 ∧ ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑣 · 𝑢 ) − ( 𝐴 · 𝑦 ) ) ) < 𝑧 ) ) |
| 9 | fvoveq1 | ⊢ ( 𝑣 = 𝐴 → ( abs ‘ ( 𝑣 − 𝐴 ) ) = ( abs ‘ ( 𝐴 − 𝐴 ) ) ) | |
| 10 | 9 | breq1d | ⊢ ( 𝑣 = 𝐴 → ( ( abs ‘ ( 𝑣 − 𝐴 ) ) < 𝑡 ↔ ( abs ‘ ( 𝐴 − 𝐴 ) ) < 𝑡 ) ) |
| 11 | 10 | anbi1d | ⊢ ( 𝑣 = 𝐴 → ( ( ( abs ‘ ( 𝑣 − 𝐴 ) ) < 𝑡 ∧ ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 ) ↔ ( ( abs ‘ ( 𝐴 − 𝐴 ) ) < 𝑡 ∧ ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 ) ) ) |
| 12 | oveq1 | ⊢ ( 𝑣 = 𝐴 → ( 𝑣 · 𝑢 ) = ( 𝐴 · 𝑢 ) ) | |
| 13 | 12 | fvoveq1d | ⊢ ( 𝑣 = 𝐴 → ( abs ‘ ( ( 𝑣 · 𝑢 ) − ( 𝐴 · 𝑦 ) ) ) = ( abs ‘ ( ( 𝐴 · 𝑢 ) − ( 𝐴 · 𝑦 ) ) ) ) |
| 14 | 13 | breq1d | ⊢ ( 𝑣 = 𝐴 → ( ( abs ‘ ( ( 𝑣 · 𝑢 ) − ( 𝐴 · 𝑦 ) ) ) < 𝑧 ↔ ( abs ‘ ( ( 𝐴 · 𝑢 ) − ( 𝐴 · 𝑦 ) ) ) < 𝑧 ) ) |
| 15 | 11 14 | imbi12d | ⊢ ( 𝑣 = 𝐴 → ( ( ( ( abs ‘ ( 𝑣 − 𝐴 ) ) < 𝑡 ∧ ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑣 · 𝑢 ) − ( 𝐴 · 𝑦 ) ) ) < 𝑧 ) ↔ ( ( ( abs ‘ ( 𝐴 − 𝐴 ) ) < 𝑡 ∧ ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐴 · 𝑢 ) − ( 𝐴 · 𝑦 ) ) ) < 𝑧 ) ) ) |
| 16 | 15 | ralbidv | ⊢ ( 𝑣 = 𝐴 → ( ∀ 𝑢 ∈ ℂ ( ( ( abs ‘ ( 𝑣 − 𝐴 ) ) < 𝑡 ∧ ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑣 · 𝑢 ) − ( 𝐴 · 𝑦 ) ) ) < 𝑧 ) ↔ ∀ 𝑢 ∈ ℂ ( ( ( abs ‘ ( 𝐴 − 𝐴 ) ) < 𝑡 ∧ ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐴 · 𝑢 ) − ( 𝐴 · 𝑦 ) ) ) < 𝑧 ) ) ) |
| 17 | 16 | rspcv | ⊢ ( 𝐴 ∈ ℂ → ( ∀ 𝑣 ∈ ℂ ∀ 𝑢 ∈ ℂ ( ( ( abs ‘ ( 𝑣 − 𝐴 ) ) < 𝑡 ∧ ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑣 · 𝑢 ) − ( 𝐴 · 𝑦 ) ) ) < 𝑧 ) → ∀ 𝑢 ∈ ℂ ( ( ( abs ‘ ( 𝐴 − 𝐴 ) ) < 𝑡 ∧ ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐴 · 𝑢 ) − ( 𝐴 · 𝑦 ) ) ) < 𝑧 ) ) ) |
| 18 | 17 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+ ) ) ∧ ( 𝑡 ∈ ℝ+ ∧ 𝑤 ∈ ℝ+ ) ) → ( ∀ 𝑣 ∈ ℂ ∀ 𝑢 ∈ ℂ ( ( ( abs ‘ ( 𝑣 − 𝐴 ) ) < 𝑡 ∧ ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑣 · 𝑢 ) − ( 𝐴 · 𝑦 ) ) ) < 𝑧 ) → ∀ 𝑢 ∈ ℂ ( ( ( abs ‘ ( 𝐴 − 𝐴 ) ) < 𝑡 ∧ ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐴 · 𝑢 ) − ( 𝐴 · 𝑦 ) ) ) < 𝑧 ) ) ) |
| 19 | subid | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 − 𝐴 ) = 0 ) | |
| 20 | 19 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+ ) ) ∧ ( ( 𝑡 ∈ ℝ+ ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑢 ∈ ℂ ) ) → ( 𝐴 − 𝐴 ) = 0 ) |
| 21 | 20 | abs00bd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+ ) ) ∧ ( ( 𝑡 ∈ ℝ+ ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑢 ∈ ℂ ) ) → ( abs ‘ ( 𝐴 − 𝐴 ) ) = 0 ) |
| 22 | simprll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+ ) ) ∧ ( ( 𝑡 ∈ ℝ+ ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑢 ∈ ℂ ) ) → 𝑡 ∈ ℝ+ ) | |
| 23 | 22 | rpgt0d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+ ) ) ∧ ( ( 𝑡 ∈ ℝ+ ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑢 ∈ ℂ ) ) → 0 < 𝑡 ) |
| 24 | 21 23 | eqbrtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+ ) ) ∧ ( ( 𝑡 ∈ ℝ+ ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑢 ∈ ℂ ) ) → ( abs ‘ ( 𝐴 − 𝐴 ) ) < 𝑡 ) |
| 25 | 24 | biantrurd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+ ) ) ∧ ( ( 𝑡 ∈ ℝ+ ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑢 ∈ ℂ ) ) → ( ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 ↔ ( ( abs ‘ ( 𝐴 − 𝐴 ) ) < 𝑡 ∧ ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 ) ) ) |
| 26 | simprr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+ ) ) ∧ ( ( 𝑡 ∈ ℝ+ ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑢 ∈ ℂ ) ) → 𝑢 ∈ ℂ ) | |
| 27 | oveq2 | ⊢ ( 𝑥 = 𝑢 → ( 𝐴 · 𝑥 ) = ( 𝐴 · 𝑢 ) ) | |
| 28 | ovex | ⊢ ( 𝐴 · 𝑢 ) ∈ V | |
| 29 | 27 1 28 | fvmpt | ⊢ ( 𝑢 ∈ ℂ → ( 𝐹 ‘ 𝑢 ) = ( 𝐴 · 𝑢 ) ) |
| 30 | 26 29 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+ ) ) ∧ ( ( 𝑡 ∈ ℝ+ ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑢 ∈ ℂ ) ) → ( 𝐹 ‘ 𝑢 ) = ( 𝐴 · 𝑢 ) ) |
| 31 | simplrl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+ ) ) ∧ ( ( 𝑡 ∈ ℝ+ ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑢 ∈ ℂ ) ) → 𝑦 ∈ ℂ ) | |
| 32 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 · 𝑥 ) = ( 𝐴 · 𝑦 ) ) | |
| 33 | ovex | ⊢ ( 𝐴 · 𝑦 ) ∈ V | |
| 34 | 32 1 33 | fvmpt | ⊢ ( 𝑦 ∈ ℂ → ( 𝐹 ‘ 𝑦 ) = ( 𝐴 · 𝑦 ) ) |
| 35 | 31 34 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+ ) ) ∧ ( ( 𝑡 ∈ ℝ+ ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑢 ∈ ℂ ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐴 · 𝑦 ) ) |
| 36 | 30 35 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+ ) ) ∧ ( ( 𝑡 ∈ ℝ+ ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑢 ∈ ℂ ) ) → ( ( 𝐹 ‘ 𝑢 ) − ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐴 · 𝑢 ) − ( 𝐴 · 𝑦 ) ) ) |
| 37 | 36 | fveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+ ) ) ∧ ( ( 𝑡 ∈ ℝ+ ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑢 ∈ ℂ ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑢 ) − ( 𝐹 ‘ 𝑦 ) ) ) = ( abs ‘ ( ( 𝐴 · 𝑢 ) − ( 𝐴 · 𝑦 ) ) ) ) |
| 38 | 37 | breq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+ ) ) ∧ ( ( 𝑡 ∈ ℝ+ ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑢 ∈ ℂ ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑢 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑧 ↔ ( abs ‘ ( ( 𝐴 · 𝑢 ) − ( 𝐴 · 𝑦 ) ) ) < 𝑧 ) ) |
| 39 | 25 38 | imbi12d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+ ) ) ∧ ( ( 𝑡 ∈ ℝ+ ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑢 ∈ ℂ ) ) → ( ( ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑢 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑧 ) ↔ ( ( ( abs ‘ ( 𝐴 − 𝐴 ) ) < 𝑡 ∧ ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐴 · 𝑢 ) − ( 𝐴 · 𝑦 ) ) ) < 𝑧 ) ) ) |
| 40 | 39 | anassrs | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+ ) ) ∧ ( 𝑡 ∈ ℝ+ ∧ 𝑤 ∈ ℝ+ ) ) ∧ 𝑢 ∈ ℂ ) → ( ( ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑢 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑧 ) ↔ ( ( ( abs ‘ ( 𝐴 − 𝐴 ) ) < 𝑡 ∧ ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐴 · 𝑢 ) − ( 𝐴 · 𝑦 ) ) ) < 𝑧 ) ) ) |
| 41 | 40 | ralbidva | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+ ) ) ∧ ( 𝑡 ∈ ℝ+ ∧ 𝑤 ∈ ℝ+ ) ) → ( ∀ 𝑢 ∈ ℂ ( ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑢 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑧 ) ↔ ∀ 𝑢 ∈ ℂ ( ( ( abs ‘ ( 𝐴 − 𝐴 ) ) < 𝑡 ∧ ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐴 · 𝑢 ) − ( 𝐴 · 𝑦 ) ) ) < 𝑧 ) ) ) |
| 42 | 18 41 | sylibrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+ ) ) ∧ ( 𝑡 ∈ ℝ+ ∧ 𝑤 ∈ ℝ+ ) ) → ( ∀ 𝑣 ∈ ℂ ∀ 𝑢 ∈ ℂ ( ( ( abs ‘ ( 𝑣 − 𝐴 ) ) < 𝑡 ∧ ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑣 · 𝑢 ) − ( 𝐴 · 𝑦 ) ) ) < 𝑧 ) → ∀ 𝑢 ∈ ℂ ( ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑢 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑧 ) ) ) |
| 43 | 42 | anassrs | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑡 ∈ ℝ+ ) ∧ 𝑤 ∈ ℝ+ ) → ( ∀ 𝑣 ∈ ℂ ∀ 𝑢 ∈ ℂ ( ( ( abs ‘ ( 𝑣 − 𝐴 ) ) < 𝑡 ∧ ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑣 · 𝑢 ) − ( 𝐴 · 𝑦 ) ) ) < 𝑧 ) → ∀ 𝑢 ∈ ℂ ( ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑢 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑧 ) ) ) |
| 44 | 43 | reximdva | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑡 ∈ ℝ+ ) → ( ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ ℂ ∀ 𝑢 ∈ ℂ ( ( ( abs ‘ ( 𝑣 − 𝐴 ) ) < 𝑡 ∧ ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑣 · 𝑢 ) − ( 𝐴 · 𝑦 ) ) ) < 𝑧 ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑢 ∈ ℂ ( ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑢 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑧 ) ) ) |
| 45 | 44 | rexlimdva | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+ ) ) → ( ∃ 𝑡 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ ℂ ∀ 𝑢 ∈ ℂ ( ( ( abs ‘ ( 𝑣 − 𝐴 ) ) < 𝑡 ∧ ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑣 · 𝑢 ) − ( 𝐴 · 𝑦 ) ) ) < 𝑧 ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑢 ∈ ℂ ( ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑢 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑧 ) ) ) |
| 46 | 8 45 | mpd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+ ) ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑢 ∈ ℂ ( ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑢 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑧 ) ) |
| 47 | 46 | ralrimivva | ⊢ ( 𝐴 ∈ ℂ → ∀ 𝑦 ∈ ℂ ∀ 𝑧 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑢 ∈ ℂ ( ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑢 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑧 ) ) |
| 48 | ssid | ⊢ ℂ ⊆ ℂ | |
| 49 | elcncf2 | ⊢ ( ( ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝐹 ∈ ( ℂ –cn→ ℂ ) ↔ ( 𝐹 : ℂ ⟶ ℂ ∧ ∀ 𝑦 ∈ ℂ ∀ 𝑧 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑢 ∈ ℂ ( ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑢 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑧 ) ) ) ) | |
| 50 | 48 48 49 | mp2an | ⊢ ( 𝐹 ∈ ( ℂ –cn→ ℂ ) ↔ ( 𝐹 : ℂ ⟶ ℂ ∧ ∀ 𝑦 ∈ ℂ ∀ 𝑧 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑢 ∈ ℂ ( ( abs ‘ ( 𝑢 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑢 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑧 ) ) ) |
| 51 | 3 47 50 | sylanbrc | ⊢ ( 𝐴 ∈ ℂ → 𝐹 ∈ ( ℂ –cn→ ℂ ) ) |