This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The divisor function is a function into the complex numbers. (Contributed by Mario Carneiro, 22-Sep-2014) (Revised by Mario Carneiro, 21-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sgmf | ⊢ σ : ( ℂ × ℕ ) ⟶ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfid | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ∈ Fin ) | |
| 2 | dvdsssfz1 | ⊢ ( 𝑛 ∈ ℕ → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } ⊆ ( 1 ... 𝑛 ) ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑛 ∈ ℕ ) → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } ⊆ ( 1 ... 𝑛 ) ) |
| 4 | 1 3 | ssfid | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑛 ∈ ℕ ) → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } ∈ Fin ) |
| 5 | elrabi | ⊢ ( 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } → 𝑘 ∈ ℕ ) | |
| 6 | 5 | nncnd | ⊢ ( 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } → 𝑘 ∈ ℂ ) |
| 7 | simpl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ ℂ ) | |
| 8 | cxpcl | ⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑘 ↑𝑐 𝑥 ) ∈ ℂ ) | |
| 9 | 6 7 8 | syl2anr | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } ) → ( 𝑘 ↑𝑐 𝑥 ) ∈ ℂ ) |
| 10 | 4 9 | fsumcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑛 ∈ ℕ ) → Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } ( 𝑘 ↑𝑐 𝑥 ) ∈ ℂ ) |
| 11 | 10 | rgen2 | ⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑛 ∈ ℕ Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } ( 𝑘 ↑𝑐 𝑥 ) ∈ ℂ |
| 12 | df-sgm | ⊢ σ = ( 𝑥 ∈ ℂ , 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } ( 𝑘 ↑𝑐 𝑥 ) ) | |
| 13 | 12 | fmpo | ⊢ ( ∀ 𝑥 ∈ ℂ ∀ 𝑛 ∈ ℕ Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } ( 𝑘 ↑𝑐 𝑥 ) ∈ ℂ ↔ σ : ( ℂ × ℕ ) ⟶ ℂ ) |
| 14 | 11 13 | mpbi | ⊢ σ : ( ℂ × ℕ ) ⟶ ℂ |