This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The divisor function is a function into the complex numbers. (Contributed by Mario Carneiro, 22-Sep-2014) (Revised by Mario Carneiro, 21-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sgmf | |- sigma : ( CC X. NN ) --> CC |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfid | |- ( ( x e. CC /\ n e. NN ) -> ( 1 ... n ) e. Fin ) |
|
| 2 | dvdsssfz1 | |- ( n e. NN -> { p e. NN | p || n } C_ ( 1 ... n ) ) |
|
| 3 | 2 | adantl | |- ( ( x e. CC /\ n e. NN ) -> { p e. NN | p || n } C_ ( 1 ... n ) ) |
| 4 | 1 3 | ssfid | |- ( ( x e. CC /\ n e. NN ) -> { p e. NN | p || n } e. Fin ) |
| 5 | elrabi | |- ( k e. { p e. NN | p || n } -> k e. NN ) |
|
| 6 | 5 | nncnd | |- ( k e. { p e. NN | p || n } -> k e. CC ) |
| 7 | simpl | |- ( ( x e. CC /\ n e. NN ) -> x e. CC ) |
|
| 8 | cxpcl | |- ( ( k e. CC /\ x e. CC ) -> ( k ^c x ) e. CC ) |
|
| 9 | 6 7 8 | syl2anr | |- ( ( ( x e. CC /\ n e. NN ) /\ k e. { p e. NN | p || n } ) -> ( k ^c x ) e. CC ) |
| 10 | 4 9 | fsumcl | |- ( ( x e. CC /\ n e. NN ) -> sum_ k e. { p e. NN | p || n } ( k ^c x ) e. CC ) |
| 11 | 10 | rgen2 | |- A. x e. CC A. n e. NN sum_ k e. { p e. NN | p || n } ( k ^c x ) e. CC |
| 12 | df-sgm | |- sigma = ( x e. CC , n e. NN |-> sum_ k e. { p e. NN | p || n } ( k ^c x ) ) |
|
| 13 | 12 | fmpo | |- ( A. x e. CC A. n e. NN sum_ k e. { p e. NN | p || n } ( k ^c x ) e. CC <-> sigma : ( CC X. NN ) --> CC ) |
| 14 | 11 13 | mpbi | |- sigma : ( CC X. NN ) --> CC |