This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the sum of positive divisors function ( x sigma n ) , which is the sum of the xth powers of the positive integer divisors of n, see definition in ApostolNT p. 38. For x = 0 , ( x sigma n ) counts the number of divisors of n , i.e. ( 0 sigma n ) isthe divisor function, see remark in ApostolNT p. 38. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-sgm | ⊢ σ = ( 𝑥 ∈ ℂ , 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } ( 𝑘 ↑𝑐 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | csgm | ⊢ σ | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | cc | ⊢ ℂ | |
| 3 | vn | ⊢ 𝑛 | |
| 4 | cn | ⊢ ℕ | |
| 5 | vk | ⊢ 𝑘 | |
| 6 | vp | ⊢ 𝑝 | |
| 7 | 6 | cv | ⊢ 𝑝 |
| 8 | cdvds | ⊢ ∥ | |
| 9 | 3 | cv | ⊢ 𝑛 |
| 10 | 7 9 8 | wbr | ⊢ 𝑝 ∥ 𝑛 |
| 11 | 10 6 4 | crab | ⊢ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } |
| 12 | 5 | cv | ⊢ 𝑘 |
| 13 | ccxp | ⊢ ↑𝑐 | |
| 14 | 1 | cv | ⊢ 𝑥 |
| 15 | 12 14 13 | co | ⊢ ( 𝑘 ↑𝑐 𝑥 ) |
| 16 | 11 15 5 | csu | ⊢ Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } ( 𝑘 ↑𝑐 𝑥 ) |
| 17 | 1 3 2 4 16 | cmpo | ⊢ ( 𝑥 ∈ ℂ , 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } ( 𝑘 ↑𝑐 𝑥 ) ) |
| 18 | 0 17 | wceq | ⊢ σ = ( 𝑥 ∈ ℂ , 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } ( 𝑘 ↑𝑐 𝑥 ) ) |