This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An extensible structure with a replaced slot is an extensible structure. (Contributed by AV, 9-Jun-2021) (Revised by AV, 14-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | setsstruct | ⊢ ( ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐺 Struct 〈 𝑀 , 𝑁 〉 ) → ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) Struct 〈 𝑀 , if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isstruct | ⊢ ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 ↔ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ Fun ( 𝐺 ∖ { ∅ } ) ∧ dom 𝐺 ⊆ ( 𝑀 ... 𝑁 ) ) ) | |
| 2 | simp2 | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) → 𝐺 Struct 〈 𝑀 , 𝑁 〉 ) | |
| 3 | simp3l | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) → 𝐸 ∈ 𝑉 ) | |
| 4 | 1z | ⊢ 1 ∈ ℤ | |
| 5 | nnge1 | ⊢ ( 𝑀 ∈ ℕ → 1 ≤ 𝑀 ) | |
| 6 | eluzuzle | ⊢ ( ( 1 ∈ ℤ ∧ 1 ≤ 𝑀 ) → ( 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝐼 ∈ ( ℤ≥ ‘ 1 ) ) ) | |
| 7 | 4 5 6 | sylancr | ⊢ ( 𝑀 ∈ ℕ → ( 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝐼 ∈ ( ℤ≥ ‘ 1 ) ) ) |
| 8 | elnnuz | ⊢ ( 𝐼 ∈ ℕ ↔ 𝐼 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 9 | 7 8 | imbitrrdi | ⊢ ( 𝑀 ∈ ℕ → ( 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝐼 ∈ ℕ ) ) |
| 10 | 9 | adantld | ⊢ ( 𝑀 ∈ ℕ → ( ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐼 ∈ ℕ ) ) |
| 11 | 10 | 3ad2ant1 | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) → ( ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐼 ∈ ℕ ) ) |
| 12 | 11 | a1d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) → ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 → ( ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐼 ∈ ℕ ) ) ) |
| 13 | 12 | 3imp | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) → 𝐼 ∈ ℕ ) |
| 14 | 2 3 13 | 3jca | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) → ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ℕ ) ) |
| 15 | op1stg | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) = 𝑀 ) | |
| 16 | 15 | breq2d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐼 ≤ ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ↔ 𝐼 ≤ 𝑀 ) ) |
| 17 | eqidd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝐼 = 𝐼 ) | |
| 18 | 16 17 15 | ifbieq12d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → if ( 𝐼 ≤ ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 , ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ) = if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ) |
| 19 | 18 | 3adant3 | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) → if ( 𝐼 ≤ ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 , ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ) = if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ) |
| 20 | 19 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) → if ( 𝐼 ≤ ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 , ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ) = if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ) |
| 21 | eluz2 | ⊢ ( 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) ) | |
| 22 | zre | ⊢ ( 𝐼 ∈ ℤ → 𝐼 ∈ ℝ ) | |
| 23 | 22 | rexrd | ⊢ ( 𝐼 ∈ ℤ → 𝐼 ∈ ℝ* ) |
| 24 | 23 | 3ad2ant2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) → 𝐼 ∈ ℝ* ) |
| 25 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 26 | 25 | rexrd | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ* ) |
| 27 | 26 | 3ad2ant1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) → 𝑀 ∈ ℝ* ) |
| 28 | simp3 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) → 𝑀 ≤ 𝐼 ) | |
| 29 | 24 27 28 | 3jca | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) → ( 𝐼 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ∧ 𝑀 ≤ 𝐼 ) ) |
| 30 | 29 | a1d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) → ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) → ( 𝐼 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ∧ 𝑀 ≤ 𝐼 ) ) ) |
| 31 | 21 30 | sylbi | ⊢ ( 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) → ( 𝐼 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ∧ 𝑀 ≤ 𝐼 ) ) ) |
| 32 | 31 | adantl | ⊢ ( ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) → ( 𝐼 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ∧ 𝑀 ≤ 𝐼 ) ) ) |
| 33 | 32 | impcom | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) → ( 𝐼 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ∧ 𝑀 ≤ 𝐼 ) ) |
| 34 | xrmineq | ⊢ ( ( 𝐼 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ∧ 𝑀 ≤ 𝐼 ) → if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) = 𝑀 ) | |
| 35 | 33 34 | syl | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) → if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) = 𝑀 ) |
| 36 | 20 35 | eqtr2d | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) → 𝑀 = if ( 𝐼 ≤ ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 , ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ) ) |
| 37 | 36 | 3adant2 | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) → 𝑀 = if ( 𝐼 ≤ ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 , ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ) ) |
| 38 | op2ndg | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) = 𝑁 ) | |
| 39 | 38 | eqcomd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑁 = ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) ) |
| 40 | 39 | breq2d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐼 ≤ 𝑁 ↔ 𝐼 ≤ ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) ) ) |
| 41 | 40 39 17 | ifbieq12d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) = if ( 𝐼 ≤ ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 ) ) |
| 42 | 41 | 3adant3 | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) → if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) = if ( 𝐼 ≤ ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 ) ) |
| 43 | 42 | 3ad2ant1 | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) → if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) = if ( 𝐼 ≤ ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 ) ) |
| 44 | 37 43 | opeq12d | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) → 〈 𝑀 , if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) 〉 = 〈 if ( 𝐼 ≤ ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 , ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ) , if ( 𝐼 ≤ ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 ) 〉 ) |
| 45 | 14 44 | jca | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) → ( ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ℕ ) ∧ 〈 𝑀 , if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) 〉 = 〈 if ( 𝐼 ≤ ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 , ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ) , if ( 𝐼 ≤ ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 ) 〉 ) ) |
| 46 | 45 | 3exp | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) → ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 → ( ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ℕ ) ∧ 〈 𝑀 , if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) 〉 = 〈 if ( 𝐼 ≤ ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 , ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ) , if ( 𝐼 ≤ ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 ) 〉 ) ) ) ) |
| 47 | 46 | 3ad2ant1 | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ Fun ( 𝐺 ∖ { ∅ } ) ∧ dom 𝐺 ⊆ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 → ( ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ℕ ) ∧ 〈 𝑀 , if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) 〉 = 〈 if ( 𝐼 ≤ ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 , ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ) , if ( 𝐼 ≤ ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 ) 〉 ) ) ) ) |
| 48 | 1 47 | sylbi | ⊢ ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 → ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 → ( ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ℕ ) ∧ 〈 𝑀 , if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) 〉 = 〈 if ( 𝐼 ≤ ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 , ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ) , if ( 𝐼 ≤ ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 ) 〉 ) ) ) ) |
| 49 | 48 | pm2.43i | ⊢ ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 → ( ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ℕ ) ∧ 〈 𝑀 , if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) 〉 = 〈 if ( 𝐼 ≤ ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 , ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ) , if ( 𝐼 ≤ ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 ) 〉 ) ) ) |
| 50 | 49 | expdcom | ⊢ ( 𝐸 ∈ 𝑉 → ( 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 → ( ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ℕ ) ∧ 〈 𝑀 , if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) 〉 = 〈 if ( 𝐼 ≤ ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 , ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ) , if ( 𝐼 ≤ ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 ) 〉 ) ) ) ) |
| 51 | 50 | 3imp | ⊢ ( ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐺 Struct 〈 𝑀 , 𝑁 〉 ) → ( ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ℕ ) ∧ 〈 𝑀 , if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) 〉 = 〈 if ( 𝐼 ≤ ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 , ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ) , if ( 𝐼 ≤ ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 ) 〉 ) ) |
| 52 | setsstruct2 | ⊢ ( ( ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ℕ ) ∧ 〈 𝑀 , if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) 〉 = 〈 if ( 𝐼 ≤ ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 , ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ) , if ( 𝐼 ≤ ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 ) 〉 ) → ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) Struct 〈 𝑀 , if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) 〉 ) | |
| 53 | 51 52 | syl | ⊢ ( ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐺 Struct 〈 𝑀 , 𝑁 〉 ) → ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) Struct 〈 𝑀 , if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) 〉 ) |