This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An extensible structure with a replaced slot is an extensible structure. (Contributed by AV, 9-Jun-2021) (Revised by AV, 14-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | setsstruct | |- ( ( E e. V /\ I e. ( ZZ>= ` M ) /\ G Struct <. M , N >. ) -> ( G sSet <. I , E >. ) Struct <. M , if ( I <_ N , N , I ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isstruct | |- ( G Struct <. M , N >. <-> ( ( M e. NN /\ N e. NN /\ M <_ N ) /\ Fun ( G \ { (/) } ) /\ dom G C_ ( M ... N ) ) ) |
|
| 2 | simp2 | |- ( ( ( M e. NN /\ N e. NN /\ M <_ N ) /\ G Struct <. M , N >. /\ ( E e. V /\ I e. ( ZZ>= ` M ) ) ) -> G Struct <. M , N >. ) |
|
| 3 | simp3l | |- ( ( ( M e. NN /\ N e. NN /\ M <_ N ) /\ G Struct <. M , N >. /\ ( E e. V /\ I e. ( ZZ>= ` M ) ) ) -> E e. V ) |
|
| 4 | 1z | |- 1 e. ZZ |
|
| 5 | nnge1 | |- ( M e. NN -> 1 <_ M ) |
|
| 6 | eluzuzle | |- ( ( 1 e. ZZ /\ 1 <_ M ) -> ( I e. ( ZZ>= ` M ) -> I e. ( ZZ>= ` 1 ) ) ) |
|
| 7 | 4 5 6 | sylancr | |- ( M e. NN -> ( I e. ( ZZ>= ` M ) -> I e. ( ZZ>= ` 1 ) ) ) |
| 8 | elnnuz | |- ( I e. NN <-> I e. ( ZZ>= ` 1 ) ) |
|
| 9 | 7 8 | imbitrrdi | |- ( M e. NN -> ( I e. ( ZZ>= ` M ) -> I e. NN ) ) |
| 10 | 9 | adantld | |- ( M e. NN -> ( ( E e. V /\ I e. ( ZZ>= ` M ) ) -> I e. NN ) ) |
| 11 | 10 | 3ad2ant1 | |- ( ( M e. NN /\ N e. NN /\ M <_ N ) -> ( ( E e. V /\ I e. ( ZZ>= ` M ) ) -> I e. NN ) ) |
| 12 | 11 | a1d | |- ( ( M e. NN /\ N e. NN /\ M <_ N ) -> ( G Struct <. M , N >. -> ( ( E e. V /\ I e. ( ZZ>= ` M ) ) -> I e. NN ) ) ) |
| 13 | 12 | 3imp | |- ( ( ( M e. NN /\ N e. NN /\ M <_ N ) /\ G Struct <. M , N >. /\ ( E e. V /\ I e. ( ZZ>= ` M ) ) ) -> I e. NN ) |
| 14 | 2 3 13 | 3jca | |- ( ( ( M e. NN /\ N e. NN /\ M <_ N ) /\ G Struct <. M , N >. /\ ( E e. V /\ I e. ( ZZ>= ` M ) ) ) -> ( G Struct <. M , N >. /\ E e. V /\ I e. NN ) ) |
| 15 | op1stg | |- ( ( M e. NN /\ N e. NN ) -> ( 1st ` <. M , N >. ) = M ) |
|
| 16 | 15 | breq2d | |- ( ( M e. NN /\ N e. NN ) -> ( I <_ ( 1st ` <. M , N >. ) <-> I <_ M ) ) |
| 17 | eqidd | |- ( ( M e. NN /\ N e. NN ) -> I = I ) |
|
| 18 | 16 17 15 | ifbieq12d | |- ( ( M e. NN /\ N e. NN ) -> if ( I <_ ( 1st ` <. M , N >. ) , I , ( 1st ` <. M , N >. ) ) = if ( I <_ M , I , M ) ) |
| 19 | 18 | 3adant3 | |- ( ( M e. NN /\ N e. NN /\ M <_ N ) -> if ( I <_ ( 1st ` <. M , N >. ) , I , ( 1st ` <. M , N >. ) ) = if ( I <_ M , I , M ) ) |
| 20 | 19 | adantr | |- ( ( ( M e. NN /\ N e. NN /\ M <_ N ) /\ ( E e. V /\ I e. ( ZZ>= ` M ) ) ) -> if ( I <_ ( 1st ` <. M , N >. ) , I , ( 1st ` <. M , N >. ) ) = if ( I <_ M , I , M ) ) |
| 21 | eluz2 | |- ( I e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ I e. ZZ /\ M <_ I ) ) |
|
| 22 | zre | |- ( I e. ZZ -> I e. RR ) |
|
| 23 | 22 | rexrd | |- ( I e. ZZ -> I e. RR* ) |
| 24 | 23 | 3ad2ant2 | |- ( ( M e. ZZ /\ I e. ZZ /\ M <_ I ) -> I e. RR* ) |
| 25 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 26 | 25 | rexrd | |- ( M e. ZZ -> M e. RR* ) |
| 27 | 26 | 3ad2ant1 | |- ( ( M e. ZZ /\ I e. ZZ /\ M <_ I ) -> M e. RR* ) |
| 28 | simp3 | |- ( ( M e. ZZ /\ I e. ZZ /\ M <_ I ) -> M <_ I ) |
|
| 29 | 24 27 28 | 3jca | |- ( ( M e. ZZ /\ I e. ZZ /\ M <_ I ) -> ( I e. RR* /\ M e. RR* /\ M <_ I ) ) |
| 30 | 29 | a1d | |- ( ( M e. ZZ /\ I e. ZZ /\ M <_ I ) -> ( ( M e. NN /\ N e. NN /\ M <_ N ) -> ( I e. RR* /\ M e. RR* /\ M <_ I ) ) ) |
| 31 | 21 30 | sylbi | |- ( I e. ( ZZ>= ` M ) -> ( ( M e. NN /\ N e. NN /\ M <_ N ) -> ( I e. RR* /\ M e. RR* /\ M <_ I ) ) ) |
| 32 | 31 | adantl | |- ( ( E e. V /\ I e. ( ZZ>= ` M ) ) -> ( ( M e. NN /\ N e. NN /\ M <_ N ) -> ( I e. RR* /\ M e. RR* /\ M <_ I ) ) ) |
| 33 | 32 | impcom | |- ( ( ( M e. NN /\ N e. NN /\ M <_ N ) /\ ( E e. V /\ I e. ( ZZ>= ` M ) ) ) -> ( I e. RR* /\ M e. RR* /\ M <_ I ) ) |
| 34 | xrmineq | |- ( ( I e. RR* /\ M e. RR* /\ M <_ I ) -> if ( I <_ M , I , M ) = M ) |
|
| 35 | 33 34 | syl | |- ( ( ( M e. NN /\ N e. NN /\ M <_ N ) /\ ( E e. V /\ I e. ( ZZ>= ` M ) ) ) -> if ( I <_ M , I , M ) = M ) |
| 36 | 20 35 | eqtr2d | |- ( ( ( M e. NN /\ N e. NN /\ M <_ N ) /\ ( E e. V /\ I e. ( ZZ>= ` M ) ) ) -> M = if ( I <_ ( 1st ` <. M , N >. ) , I , ( 1st ` <. M , N >. ) ) ) |
| 37 | 36 | 3adant2 | |- ( ( ( M e. NN /\ N e. NN /\ M <_ N ) /\ G Struct <. M , N >. /\ ( E e. V /\ I e. ( ZZ>= ` M ) ) ) -> M = if ( I <_ ( 1st ` <. M , N >. ) , I , ( 1st ` <. M , N >. ) ) ) |
| 38 | op2ndg | |- ( ( M e. NN /\ N e. NN ) -> ( 2nd ` <. M , N >. ) = N ) |
|
| 39 | 38 | eqcomd | |- ( ( M e. NN /\ N e. NN ) -> N = ( 2nd ` <. M , N >. ) ) |
| 40 | 39 | breq2d | |- ( ( M e. NN /\ N e. NN ) -> ( I <_ N <-> I <_ ( 2nd ` <. M , N >. ) ) ) |
| 41 | 40 39 17 | ifbieq12d | |- ( ( M e. NN /\ N e. NN ) -> if ( I <_ N , N , I ) = if ( I <_ ( 2nd ` <. M , N >. ) , ( 2nd ` <. M , N >. ) , I ) ) |
| 42 | 41 | 3adant3 | |- ( ( M e. NN /\ N e. NN /\ M <_ N ) -> if ( I <_ N , N , I ) = if ( I <_ ( 2nd ` <. M , N >. ) , ( 2nd ` <. M , N >. ) , I ) ) |
| 43 | 42 | 3ad2ant1 | |- ( ( ( M e. NN /\ N e. NN /\ M <_ N ) /\ G Struct <. M , N >. /\ ( E e. V /\ I e. ( ZZ>= ` M ) ) ) -> if ( I <_ N , N , I ) = if ( I <_ ( 2nd ` <. M , N >. ) , ( 2nd ` <. M , N >. ) , I ) ) |
| 44 | 37 43 | opeq12d | |- ( ( ( M e. NN /\ N e. NN /\ M <_ N ) /\ G Struct <. M , N >. /\ ( E e. V /\ I e. ( ZZ>= ` M ) ) ) -> <. M , if ( I <_ N , N , I ) >. = <. if ( I <_ ( 1st ` <. M , N >. ) , I , ( 1st ` <. M , N >. ) ) , if ( I <_ ( 2nd ` <. M , N >. ) , ( 2nd ` <. M , N >. ) , I ) >. ) |
| 45 | 14 44 | jca | |- ( ( ( M e. NN /\ N e. NN /\ M <_ N ) /\ G Struct <. M , N >. /\ ( E e. V /\ I e. ( ZZ>= ` M ) ) ) -> ( ( G Struct <. M , N >. /\ E e. V /\ I e. NN ) /\ <. M , if ( I <_ N , N , I ) >. = <. if ( I <_ ( 1st ` <. M , N >. ) , I , ( 1st ` <. M , N >. ) ) , if ( I <_ ( 2nd ` <. M , N >. ) , ( 2nd ` <. M , N >. ) , I ) >. ) ) |
| 46 | 45 | 3exp | |- ( ( M e. NN /\ N e. NN /\ M <_ N ) -> ( G Struct <. M , N >. -> ( ( E e. V /\ I e. ( ZZ>= ` M ) ) -> ( ( G Struct <. M , N >. /\ E e. V /\ I e. NN ) /\ <. M , if ( I <_ N , N , I ) >. = <. if ( I <_ ( 1st ` <. M , N >. ) , I , ( 1st ` <. M , N >. ) ) , if ( I <_ ( 2nd ` <. M , N >. ) , ( 2nd ` <. M , N >. ) , I ) >. ) ) ) ) |
| 47 | 46 | 3ad2ant1 | |- ( ( ( M e. NN /\ N e. NN /\ M <_ N ) /\ Fun ( G \ { (/) } ) /\ dom G C_ ( M ... N ) ) -> ( G Struct <. M , N >. -> ( ( E e. V /\ I e. ( ZZ>= ` M ) ) -> ( ( G Struct <. M , N >. /\ E e. V /\ I e. NN ) /\ <. M , if ( I <_ N , N , I ) >. = <. if ( I <_ ( 1st ` <. M , N >. ) , I , ( 1st ` <. M , N >. ) ) , if ( I <_ ( 2nd ` <. M , N >. ) , ( 2nd ` <. M , N >. ) , I ) >. ) ) ) ) |
| 48 | 1 47 | sylbi | |- ( G Struct <. M , N >. -> ( G Struct <. M , N >. -> ( ( E e. V /\ I e. ( ZZ>= ` M ) ) -> ( ( G Struct <. M , N >. /\ E e. V /\ I e. NN ) /\ <. M , if ( I <_ N , N , I ) >. = <. if ( I <_ ( 1st ` <. M , N >. ) , I , ( 1st ` <. M , N >. ) ) , if ( I <_ ( 2nd ` <. M , N >. ) , ( 2nd ` <. M , N >. ) , I ) >. ) ) ) ) |
| 49 | 48 | pm2.43i | |- ( G Struct <. M , N >. -> ( ( E e. V /\ I e. ( ZZ>= ` M ) ) -> ( ( G Struct <. M , N >. /\ E e. V /\ I e. NN ) /\ <. M , if ( I <_ N , N , I ) >. = <. if ( I <_ ( 1st ` <. M , N >. ) , I , ( 1st ` <. M , N >. ) ) , if ( I <_ ( 2nd ` <. M , N >. ) , ( 2nd ` <. M , N >. ) , I ) >. ) ) ) |
| 50 | 49 | expdcom | |- ( E e. V -> ( I e. ( ZZ>= ` M ) -> ( G Struct <. M , N >. -> ( ( G Struct <. M , N >. /\ E e. V /\ I e. NN ) /\ <. M , if ( I <_ N , N , I ) >. = <. if ( I <_ ( 1st ` <. M , N >. ) , I , ( 1st ` <. M , N >. ) ) , if ( I <_ ( 2nd ` <. M , N >. ) , ( 2nd ` <. M , N >. ) , I ) >. ) ) ) ) |
| 51 | 50 | 3imp | |- ( ( E e. V /\ I e. ( ZZ>= ` M ) /\ G Struct <. M , N >. ) -> ( ( G Struct <. M , N >. /\ E e. V /\ I e. NN ) /\ <. M , if ( I <_ N , N , I ) >. = <. if ( I <_ ( 1st ` <. M , N >. ) , I , ( 1st ` <. M , N >. ) ) , if ( I <_ ( 2nd ` <. M , N >. ) , ( 2nd ` <. M , N >. ) , I ) >. ) ) |
| 52 | setsstruct2 | |- ( ( ( G Struct <. M , N >. /\ E e. V /\ I e. NN ) /\ <. M , if ( I <_ N , N , I ) >. = <. if ( I <_ ( 1st ` <. M , N >. ) , I , ( 1st ` <. M , N >. ) ) , if ( I <_ ( 2nd ` <. M , N >. ) , ( 2nd ` <. M , N >. ) , I ) >. ) -> ( G sSet <. I , E >. ) Struct <. M , if ( I <_ N , N , I ) >. ) |
|
| 53 | 51 52 | syl | |- ( ( E e. V /\ I e. ( ZZ>= ` M ) /\ G Struct <. M , N >. ) -> ( G sSet <. I , E >. ) Struct <. M , if ( I <_ N , N , I ) >. ) |